
Security Assessment

Axie Infinity - Audit
CertiK Verified on Jun st

Executive Summary

Vulnerability Summary

 Critical

Critical risks are those that impact the safe

functioning of a platform and must be addressed
before launch Users should not invest in any

project with outstanding critical risks

 Major Acknowledged
Major risks can include centralization issues and

logical errors Under specific circumstances these
major risks can lead to loss of funds and/or control

of the project

 Medium Resolved Partially Resolved Acknowledged
Medium risks may not pose a direct risk to users’

funds but they can affect the overall functioning of
a platform

 Minor Resolved Partially Resolved Acknowledged
Minor risks can be any of the above but on a

smaller scale They generally do not compromise
the overall integrity of the project but they may be

less efficient than other solutions

 Informational Resolved Acknowledged
Informational errors are often recommendations to

improve the style of the code or certain operations
to fall within industry best practices They usually

do not affect the overall functioning of the code

SUMMARY AXIE INFINITY - AUDITSUMMARY AXIE INFINITY - AUDIT

CertiK Verified on Jun st

Axie Infinity - Audit
The security assessment was prepared by CertiK the leader in Web security

TYPES
Bridge

ECOSYSTEM
Ethereum

METHODS
Manual Review Static Analysis

LANGUAGE
Solidity

TIMELINE
Delivered on //

KEY COMPONENTS
N/A

CODEBASE
https//githubcom/axieinfinity/ronin-smart-contracts-v

View All

COMMITS
abefecfadbbd

dadafbcdcfdaaaffdffcc

View All

Total Findings

Resolved

Mitigated

Partially Resolved

Acknowledged

Declined

Unresolved

https://github.com/axieinfinity/ronin-smart-contracts-v2

TABLE OF CONTENTS AXIE INFINITY - AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Review Notes
Overview

External Dependencies

Privileged Roles

Project Goals

Findings

GLOBAL- Centralization Related Risks

GLOBAL- External dependencies

GLOBAL- No storage gap in Logical contracts

GLOBAL- No delay in Governance tasks

GLOBAL- Unlocked Pragma

CKP- Potential Lack of Liquidity

CKP- `_minimumVoteWeight()` can be set to a low value

CKP- Incompatibility With Deflationary Tokens

GAC- Relayers can execute any proposal in a certain condition

GAC- No check that address is an actual contract

GCK- Inconsistency With Comments

MGV- Validators could be too powerful

MGV- Using of Default Value

TCK- Potential re-entrancy on `handleAssetTransfer()`

TCK- Completion of if-else Branch

TUP- Design violation

WLC- Inappropriate Upper Limits for Fees

WLK- Questions about Tiers model

Optimizations

TABLE OF CONTENTS AXIE INFINITY - AUDIT

BMC- Variables That Could Be Declared as Immutable

Appendix

Disclaimer

TABLE OF CONTENTS AXIE INFINITY - AUDIT

CODEBASE AXIE INFINITY - AUDIT

Repository

https//githubcom/axieinfinity/ronin-smart-contracts-v

Commit

abefecfadbbd

dadafbcdcfdaaaffdffcc

CODEBASE AXIE INFINITY - AUDIT

https://github.com/axieinfinity/ronin-smart-contracts-v2

AUDIT SCOPE AXIE INFINITY - AUDIT

 files audited files with Acknowledged findings files with Partially Resolved findings

 files with Resolved findings files without findings

ID File SHA Checksum

TUP
extensions/TransparentUpgradeabl

eProxyVsol
feacfaaafdf

dbbccbac

WLC
extensions/WithdrawalLimitations

ol
cdbfbacafdaebbeeaf

dfeaece

TCK library/Tokensol
cafedbbfafbdbbe

babeabbeb

MGV
mainchain/MainchainGatewayVs

ol
cacfacfdcbfdadbad

eccdef

RGV ronin/RoninGatewayVsol
cbcfdbbbccbcd

ecfbeefefb

WLK
extensions/WithdrawalLimitations

ol
faacddfcfdbcdecaecb

dabdc

RVC common/RoninValidatorsol
eacbabaaeacabadfafffd

dceddbb

GVC extensions/GatewayVsol
adcdeafddfdfabffcabbe

aecacbb

GAC common/GovernanceAdminsol
bfcbceadbbeefceefdbce

ecafed

GCK
extensions/governance/Governanc

esol
aebffcbefeeace

dfffb

BMC migration/BridgeMigrationsol
dddabfddecbacbd

edfbef

GGC
extensions/governance/GatewayG

overnancesol
caeeeacaefcccb

ceebcabfdecb

GPG
extensions/governance/GlobalProp

osalGovernancesol
dbadbcdcbeacce

cbdbeca

AUDIT SCOPE AXIE INFINITY - AUDIT

ID File SHA Checksum

PGC
extensions/governance/ProposalG

overnancesol
bdacabfbbecc

cedfdbcee

HPA extensions/HasProxyAdminsol
aefddfddaacfdbdceeb

ffdcbfbb

MWC extensions/MinimumWithdrawalsol
cbccedbfafabaabdf

ecfbdfc

IER interfaces/IERCMintablesol
cbaccbefdebbcd

becbdbcaea

IEC interfaces/IERCMintablesol
acdeeffcaadfffcceca

db

IQC interfaces/IQuorumsol
effdfebcffffbcbfb

cecdaa

IWE interfaces/IWETHsol
aefabecfdabaeedaaad

cfcfacadddfda

IWV interfaces/IWeightedValidatorsol
afcecaceceefcbd

efeabdfaaf

MTC
interfaces/MappedTokenConsume

rsol
bebfdcfceebbbcdbcdbc

dbfeffff

SCC interfaces/SignatureConsumersol
ffaebdecebeecbcae

ead

BCK library/Ballotsol
ebaacbddcecaedd

adbacbadb

GPC library/GlobalProposalsol
edcccacaebfcaee

bbbbecad

PCK library/Proposalsol
debcafdffaafcdccd

adbcfe

TCP library/Transfersol
babedcbedbfaae

ffdebdceb

IMG
mainchain/IMainchainGatewayVs

ol
edbcfdaddbfcbdbadc

eaedfbdcbe

MER mocks/MockERCsol
abcfeafbddfacdedbedadfd

bcad

MGC mocks/MockGatewayVsol
ffaaabcceebadcbbce

aedade

AUDIT SCOPE AXIE INFINITY - AUDIT

ID File SHA Checksum

IRG ronin/IRoninGatewayVsol
ebbbccdebdba

cfdd

MGK
mainchain/MainchainGatewayVs

ol
ceedbfecdbcbf

cdbdddbe

AUDIT SCOPE AXIE INFINITY - AUDIT

APPROACH & METHODS AXIE INFINITY - AUDIT

This report has been prepared for Ronin Network to discover issues and vulnerabilities in the source code of the

Axie Infinity - Audit project as well as any contract dependencies that were not part of an officially recognized
library A comprehensive examination has been performed utilizing Manual Review and Static Analysis techniques

The auditing process pays special attention to the following considerations

Testing the smart contracts against both common and uncommon attack vectors

Assessing the codebase to ensure compliance with current best practices and industry standards

Ensuring contract logic meets the specifications and intentions of the client

Cross referencing contract structure and implementation against similar smart contracts produced by

industry leaders

Thorough line-by-line manual review of the entire codebase by industry experts

The security assessment resulted in findings that ranged from critical to informational We recommend addressing

these findings to ensure a high level of security standards and industry practices We suggest recommendations
that could better serve the project from the security perspective

Testing the smart contracts against both common and uncommon attack vectors

Enhance general coding practices for better structures of source codes

Add enough unit tests to cover the possible use cases

Provide more comments per each function for readability especially contracts that are verified in public

Provide more transparency on privileged activities once the protocol is live

APPROACH & METHODS AXIE INFINITY - AUDIT

REVIEW NOTES AXIE INFINITY - AUDIT

Review Notes

Overview

Ronin Network has created a set of contracts that allow bridging assets and governance proposals between Ronin

Network and other EVM blockchains

External Dependencies

The scope of the audit treats third-party entities as black boxes and assumes their functional correctness However

in the real world third parties can be compromised and this may lead to lost or stolen assets

Ronin Network relies on

A Frontend server So users can ask for the bridge of their assets

Bridge relayers Servers to relay proposals on other chains

Ronin Validators Who also validate deposits and withdrawals

Potentially some other servers Who listen events and trigger actions upon event reception

Ronin Ethereum Sidechain ecosystem

Those elements are critical to Ronin Bridge's functioning and security and need to be audited

Some other smart contracts dependancies exist

ECDSA AccessControlEnumerable IQuorum IWeightedValidator for the GovernanceAdmin contract

Initializable Strings StorageSlot for the RoninValidator contract

Strings for the GatewayGovernance contract

Strings SignatureConsumer for the Governance contract

Pausable IQuorum IWeightedValidator for the GatewayV2 contract

StorageSlot for the HasProxyAdmin contract

TransparentUpgradeableProxy for the TransparentUpgradeableProxyV2 contract

ECDSA for the GlobalProposal contract

Address for the Proposal contract

IERC20 IERC721 Strings IWETH for the Token contract

ECDSA IERC20 Strings for the Transfer contract

AccessControlEnumerable Initializable for the MainchainGatewayV2 contract

Ownable IERC20 for the BridgeMigration contract

AccessControlEnumerable Initializable IERC20Mintable IERC721Mintable for the RoninGatewayV2
contract

REVIEW NOTES AXIE INFINITY - AUDIT

We assume these vulnerable actors and implement proper logic to collaborate with the current project

Privileged Roles

The following roles are adopted to enforce the access control

Role _owner is adopted to update configurations of the contract BridgeMigration

Role RELAYER_ROLE is adopted to update configurations of the contract GovernanceAdmin

Role DEFAULT_ADMIN_ROLE is adopted to update configurations of the contract GovernanceAdmin

Role onlyGovernor is adopted to update configurations of the contract GovernanceAdmin

Role onlySelfCall is adopted to update configurations of the contract GovernanceAdmin

Role onlyAdmin is adopted to update configurations of the contract RoninValidator

Role onlyAdmin is adopted to update configurations of the contract GatewayV2

Role onlyAdmin is adopted to update configurations of the contract MinimumWithdrawal

Role ifAdmin is adopted to update configurations of the contract TransparentUpgradeableProxyV2

Role onlyAdmin is adopted to update configurations of the contract WithdrawalLimitation

Role onlyAdmin is adopted to update configurations of the contract MainchainGatewayV2

Role WITHDRAWAL_UNLOCKER_ROLE is adopted to update configurations of the contract MainchainGatewayV2

Role onlyAdmin is adopted to update configurations of the contract MainchainGatewayV2

Role WITHDRAWAL_MIGRATOR is adopted to update configurations of the contract RoninGatewayV2

To improve the trustworthiness of the project dynamic runtime updates in the project should be notified to the
community Any plan to invoke the aforementioned functions should be also considered to move to the execution

queue of Timelock contract

Project Goals

The engagement was scoped to provide a security assessment of the Ronin Network bridge Specifically we sought

to verify the following non-exhaustive list of potential attack vectors

C Verify that bridge requires all necessary values to be included in the message and signed chain ids

receiver amount nonce

C Verify that used signatures are invalidated to protect bridge from replay attacks

C Verify that message hash generation algorithm is resistant to collision attacks

C Verify that bridge includes source and destination chains identifiers in the signed message and
correctly verifies them

C Verify that bridge does not allow spoofing chain identifiers

C Verify that bridge uses a nonce parameter to allow the same operation (the same sender receiver and
amount) to be executed multiple times

C Verify signed message cannot be used in a different context (use domain separator from EIP-)

REVIEW NOTES AXIE INFINITY - AUDIT

FINDINGS AXIE INFINITY - AUDIT

This report has been prepared to discover issues and vulnerabilities for Axie Infinity - Audit Through this audit we

have uncovered issues ranging from different severity levels Utilizing Static Analysis techniques to complement
rigorous manual code reviews we discovered the following findings

ID Title Category Severity Status

GLOBAL� Centralization Related Risks
Centralization /
Privilege

Major Acknowledged

GLOBAL� External Dependencies Logical Issue Medium Acknowledged

GLOBAL�
No Storage Gap In Logical
Contracts

Logical Issue Medium Partially Resolved

GLOBAL� No Delay In Governance Tasks Logical Issue Major Acknowledged

GLOBAL� Unlocked Pragma
Language
Specific

Informational Acknowledged

CKP� Potential Lack Of Liquidity Logical Issue Medium Partially Resolved

CKP�
_minimumVoteWeight() Can Be

Set To A Low Value
Logical Issue Minor Partially Resolved

CKP�
Incompatibility With Deflationary
Tokens

Volatile Code Minor Acknowledged

GAC�
Relayers Can Execute Any
Proposal In A Certain Condition

Logical Issue Medium Resolved

GAC�
No Check That Address Is An
Actual Contract

Logical Issue Minor Resolved

GCK� Inconsistency With Comments Logical Issue Informational Resolved

FINDINGS AXIE INFINITY - AUDIT

Total Findings

Critical

Major

Medium

Minor

Informational

ID Title Category Severity Status

MGV�
Validators Could Be Too
Powerful

Logical Issue Medium Acknowledged

MGV� Using Of Default Value Logical Issue Informational Acknowledged

TCK�
Potential Re-Entrancy On
handleAssetTransfer()

Logical Issue Informational Acknowledged

TCK� Completion Of If-Else Branch Volatile Code Informational Resolved

TUP� Design Violation Inconsistency Informational Acknowledged

WLC�
Inappropriate Upper Limits For
Fees

Logical Issue Minor Acknowledged

WLK� Questions About Tiers Model Inconsistency Informational Acknowledged

FINDINGS AXIE INFINITY - AUDIT

GLOBAL- FINDING DETAILS

Finding Title

Centralization Related Risks

Category Severity Location Status

Centralization / Privilege Major Acknowledged

Description

In the contract BridgeMigration the role _owner has authority over the functions shown in the diagram below
Any compromise to the _owner account may allow the hacker to take advantage of this authority and call the

migrateAndTransfer() function to steal funds

Authenticated Role

Function

Function

Function Function Calls

Function

_owner

changePausableAdmin

pauseGateway

migrateAndTransfer

unpauseGateway

IERC20

In the contract GovernanceAdmin the role RELAYER_ROLE has authority over the functions below

relayProposal() Relay a proposal and votes on another chain

relayGlobalProposal() Relay a "Global" proposal and votes on another chain

GLOBAL- AXIE INFINITY - AUDIT

Any compromise to the RELAYER_ROLE account may allow the hacker to take advantage of this authority and

attempt to relay false proposals on the impacted chain

In the contract GovernanceAdmin the role DEFAULT_ADMIN_ROLE has a high level of authority over the contract and

can add/modify roles (variable _roleSetter)

Any compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this authority and

take over important roles of the contract

In the contract GovernanceAdmin the role onlyGovernor has authority over the functions below

propose() Propose a Proposal

proposeGlobal() Propose a "Global" Proposal

proposeProposalStructAndCastVotes() Propose a Proposal and cast votes

proposeGlobalProposalStructAndCastVotes() Propose a "Global" Proposal and cast votes

Any compromise to the onlyGovernor account may allow the hacker to take advantage of this authority and create
fake proposals The attacker would however need the votes from the validator

In the contract GovernanceAdmin the role onlySelfCall has authority over the functions below

changeProxyAdmin() Change the administrator of the proxy contract

setValidatorContract() Change the address of the Validator contract

setGatewayContract() Change the address of the Gateway contract

This access control is particular since it corresponds to the contract calling itself If an attacker can create

proposals and cast them he could potentially trigger the functions above and take control over the whole contract
since he could modify the ProxyAdmin the Validator contract and the Gateway contract

In the contract RoninValidator the role onlyAdmin has authority over the functions below

addValidators() Add Ronin validators

updateValidators() Update Ronin validators

removeValidators() Remove Ronin validators

setThreshold() Configure num/denum threshold

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and add his
own validators which could later be used to attempt to vote on proposals

In the contract GatewayV2 the role onlyAdmin has authority over the functions below

setThreshold() Configure num/denum threshold

pause()/unpause() Pause/Unpause the contract

setValidatorContract() Change the address of the Validator contract

GLOBAL- AXIE INFINITY - AUDIT

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and add his

own validators (by modifying the Validator contract) which could later be used to attempt to vote on proposals

In the contract MinimumWithdrawal the role onlyAdmin has authority over the functions below

setMinimumThresholds() Sets the minimum thresholds to withdraw

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and increase

the minimum threshold to withdraw to bypass current limitations

In the contract TransparentUpgradeableProxyV2 the role ifAdmin has authority over the functions below

functionDelegateCall() Proxy admin can call contract implementation

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and attack the
implementation contract with the role of the proxy Administrator

In the contract WithdrawalLimitation the role onlyAdmin has authority over the functions below

setFullSigsThresholds() Sets the thresholds for withdrawals that requires all validator signatures

setLockedThresholds() Sets the amount thresholds to lock withdrawal

setUnlockFeePercentages() Sets fee percentages to unlock withdrawal

setDailyWithdrawalLimits() Sets daily limit amounts for the withdrawals

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and modify

withdrawals configurations

In the contract MainchainGatewayV2 the role onlyAdmin has authority over the functions below

setWrappedNativeTokenContract() Modify the wrappedNativeToken state variable

mapTokens() Maps current chain assets with Ronin assets

mapTokensAndThresholds() Maps current chain assets with Ronin assets and perform
setFullSigsThresholds() setLockedThresholds() setUnlockFeePercentages()

setDailyWithdrawalLimits()

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and cause a
Denial Of Service by modifying the wrapped token or the tokens mappings

In the contract MainchainGatewayV2 the role WITHDRAWAL_UNLOCKER_ROLE has authority over the functions below

unlockWithdrawal() Unlock withdrawals

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and steal

tokens by calling this function

In the contract MainchainGatewayV2 the role onlyAdmin has authority over the functions below

GLOBAL- AXIE INFINITY - AUDIT

mapTokens() Maps Ronin assets with other chain's assets

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and cause a
Denial Of Service by modifying the tokens mappings

In the contract RoninGatewayV2 the role WITHDRAWAL_MIGRATOR has authority over the functions below

migrateWithdrawals() Migrate withdrawals

Any compromise to the WITHDRAWAL_MIGRATOR account may allow the hacker to take advantage of this authority and

steal tokens by calling this function

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation

and level of decentralization which in most cases cannot be resolved entirely at the present stage We advise the
client to carefully manage the privileged account's private key to avoid any potential risks of being hacked In

general we strongly recommend centralized privileges or roles in the protocol be improved via a decentralized

mechanism or smart-contract-based accounts with enhanced security practices eg multisignature wallets
Indicatively here are some feasible suggestions that would also mitigate the potential risk at a different level in

terms of short-term long-term and permanent

Short Term

Timelock and Multi sign (⅔ ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point

of key management failure

Time-lock with reasonable latency eg hours for awareness on privileged operations
AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private
key compromised

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience

Long Term

Timelock and DAO the combination mitigate by applying decentralization and transparency

Time-lock with reasonable latency eg hours for awareness on privileged operations

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement

AND

GLOBAL- AXIE INFINITY - AUDIT

A medium/blog link for sharing the timelock contract multi-signers addresses and DAO information with the

public audience

Permanent

Renouncing the ownership or removing the function can be considered fully resolved

Renounce the ownership and never claim back the privileged roles
OR

Remove the risky functionality

Alleviation

[Ronin]
The BridgeMigration is used only once to migrate the existing token in the old gateway to the new gateway (on

Ethereum) Firstly we will deploy it then we ask the validators to provide us the necessary signatures to move the
fund

The RELAYER_ROLE in GovernanceAdmin can only relay proposal with enough governance signatures so we think

the risk is small

GLOBAL- AXIE INFINITY - AUDIT

GLOBAL- FINDING DETAILS

Finding Title

External Dependencies

Category Severity Location Status

Logical Issue Medium Acknowledged

Description

The Ronin bridge relies on external parties to function correctly

For instance for the bridge to work some servers must exist that will be in charge of capturing events and

triggering actions associated with private keys (cf Bridge Workers/Relayers)

In particular Ronin Network relies on

A Frontend server So users can ask for the bridge of their assets

Bridge relayers Servers to relay proposals on other chains

Ronin Validators Who also validate deposits and withdrawals

Potentially some other servers Who listen events and trigger actions upon event reception

Ronin Ethereum Sidechain ecosystem

Those elements are critical to Ronin Bridge's functioning and security and need to be audited

Some other smart contracts dependancies exist

ECDSA AccessControlEnumerable IQuorum IWeightedValidator for the GovernanceAdmin contract

Initializable Strings StorageSlot for the RoninValidator contract

Strings for the GatewayGovernance contract

Strings SignatureConsumer for the Governance contract

Pausable IQuorum IWeightedValidator for the GatewayV2 contract

StorageSlot for the HasProxyAdmin contract

TransparentUpgradeableProxy for the TransparentUpgradeableProxyV2 contract

ECDSA for the GlobalProposal contract

Address for the Proposal contract

IERC20 IERC721 Strings IWETH for the Token contract

ECDSA IERC20 Strings for the Transfer contract

AccessControlEnumerable Initializable for the MainchainGatewayV2 contract

GLOBAL- AXIE INFINITY - AUDIT

Ownable IERC20 for the BridgeMigration contract

AccessControlEnumerable Initializable IERC20Mintable IERC721Mintable for the RoninGatewayV2
contract

The above contract dependencies are considered secure in the context of the current audit

Recommendation

It is recommended to audit third-party dependencies

For the servers exposed on the Internet it is recommended to perform a pentest

In Black box mode to identify vulnerabilities that can be seen by an external attacker

In Gray box mode to identify what a malicious user could do

Alleviation

[Ronin]
The team acknowledged this issue and decided not to change the current codebase

GLOBAL- AXIE INFINITY - AUDIT

GLOBAL- FINDING DETAILS

Finding Title

No Storage Gap In Logical Contracts

Category Severity Location Status

Logical Issue Medium Partially Resolved

Description

Ronin has implemented proxyfiable contracts Those contracts inherit from the following contracts (Interfaces are
not mentionned)

RoninValidator Inherits from Initializable HasProxyAdmin

RoninGatewayV2 Inherits from GatewayV2 GatewayGovernance Initializable MinimumWithdrawal

AccessControlEnumerable

MainchainGatewayV2 Inherits from WithdrawalLimitation Initializable AccessControlEnumerable

Some of those contracts do not implement a storage gap

HasProxyAdmin

GatewayV2

MinimumWithdrawal

AccessControlEnumerable

WithdrawalLimitation

Because of this if the logical contract is upgraded to a new version and if variables are added in the dependencies
storage conflict could occur in the proxyfiable contracts causing negative consequences over the functioning of the

VolumeWars contract

Recommendation

The logic contracts need to implement a storage gap as per OpenZeppelin recommendation

uint256[50] private ______gap;

For AccessControlEnumerable an upgradeable version from OpenZeppelin is available

Alleviation

GLOBAL- AXIE INFINITY - AUDIT

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/AccessControlUpgradeable.sol

[Ronin]

The team partially resolved this issue by adding a storage gap in the contracts GatewayV2 MinimumWithdrawal and
WithdrawalLimitation in the PR For HasProxyAdmin and AccessControlEnumerable contracts the team won't

make any change for the current version

GLOBAL- AXIE INFINITY - AUDIT

https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/23/commits/431406749aa480fe427b8d163788a77e685db2ac

GLOBAL- FINDING DETAILS

Finding Title

No Delay In Governance Tasks

Category Severity Location Status

Logical Issue Major Acknowledged

Description

According to the documentation Governors are users and those users will act by providing signatures when
interacting with GovernanceAdmin contract

Considering the users' behavior is unpredictable it is recommended to introduce a certain time of delay when
performing governance actions

For example in the case that the private keys of multiple governors are compromised attackers could immediately

perform the following actions to execute malicious proposals

Create a Malicious Propocal (or Global Proposal)

Cast the Vote

Execute a Malicious proposal

This could have detrimental consequences over Ronin bridge

Recommendation

It is recommended to introduce delays in Governance actions so the bridge cannot be compromised in a matter of a
very short period of time if Governance accounts were to be compromised Also it gives the time for the Ronin

Network team to perform responses (eg pausing the main functionality) before executing malicious proposals

Alleviation

[Ronin]

Currently we are asking the validators to store the governor account in a hardware wallets so it helps minimize the

risk of getting compromised

To fully mitigate this issue we will need to carefully design the strategy when the abnormal events happen which

would take too much time right now We decided to leave it open for future upgrade of the system

GLOBAL- AXIE INFINITY - AUDIT

https://github.com/axieinfinity/ronin-smart-contracts-v2

GLOBAL- FINDING DETAILS

Finding Title

Unlocked Pragma

Category Severity Location Status

Language Specific Informational Acknowledged

Description

Contracts should be deployed using the same compiler version/flags with which they have been tested Locking the
pragma (eg by not using ^ in pragma solidity) ensures that contracts do not accidentally get deployed using

an older compiler version with unfixed bugs

Reference [SWC-] https//swcregistryio/docs/SWC-

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can be

compiled at For example for version v0.8.0 the contract should contain the following line

pragma solidity 0.8.0;

Alleviation

[Ronin]

The team acknowledged this issue and decided not to change the current codebase

GLOBAL- AXIE INFINITY - AUDIT

https://swcregistry.io/docs/SWC-103

CKP- FINDING DETAILS

Finding Title

Potential Lack Of Liquidity

Category Severity Location Status

Logical
Issue

Medium
library/Tokensol (audit) � mainchain/MainchainG
atewayVsol (audit) � ronin/RoninGateway

Vsol (audit)
Partially Resolved

Description

Both the MainchainGatewayV2 and RoninGatewayV2 contracts upon Deposits and Withdrawals use the
handleAssetTransfer() to forward the funds to the final user

The transfers might fail if there is not enough tokens in the contract For instance if there is not enough
_wrappedNativeToken in the contract the transaction will revert in the transfer() function

CKP- AXIE INFINITY - AUDIT

111 function transfer(
112 Info memory _info,
113 address _to,
114 address _token
115) internal {
116 bool _success;
117 if (_info.erc == Standard.ERC20) {
118 _success = tryTransferERC20(_token, _to, _info.quantity);
119 } else if (_info.erc == Standard.ERC721) {
120 _success = tryTransferERC721(_token, _to, _info.id);
121 }
122
123 if (!_success) {
124 revert(
125 string(
126 abi.encodePacked(
127 "Token: could not transfer ",
128 toString(_info),
129 " to ",
130 Strings.toHexString(uint160(_to), 20),
131 " token ",
132 Strings.toHexString(uint160(_token), 20)
133)
134)
135);
136 }
137 }

However no event is emitted so the Ronin network might not be alerted of this problem

Additionally if the submitWithdrawal() function on the Mainchain side reverted there is no function on the Ronin
Chain side to withdraw the locked funds in the Ronin Gateway contract Therefore the user might lose their funds

forever

Recommendation

The auditors would like to know how this edge case is dealt with by Ronin

Alleviation

[Ronin]

If there is not enough liquidity there is a bigger issue going on and we will need to address it via governance
process (eg Upgrade contracts calling for signatures to withdraw the remaining tokens in the bridge)

CKP- AXIE INFINITY - AUDIT

CKP- FINDING DETAILS

Finding Title

_minimumVoteWeight() Can Be Set To A Low Value

Category Severity Location Status

Logical
Issue

Minor
common/RoninValidatorsol (audit) � extensions/Ga
tewayVsol (audit) �

Partially Resolved

Description

When a withdrawal or a deposit operation is submitted validators agree to validate an operation For example in
_submitWithdrawal() function when enough validators have validated the operation with their signatures tokens

are sent to users

File MainchainGatewayV2

278 (...)
279 _weight += _validatorContract.getValidatorWeight(_signer);
280 if (_weight >= _minimumVoteWeight) {
281 _passed = true;
282 break;
283 }
284 }
285 require(_passed, "MainchainGatewayV2: query for insufficient vote weight");
286 withdrawalHash[_id] = _receiptHash;
287 }
288 (...)
289 _recordWithdrawal(_tokenAddr, _quantity);
290 _receipt.info.handleAssetTransfer(payable(_receipt.mainchain.addr),
_tokenAddr, wrappedNativeToken);
291 emit Withdrew(_receiptHash, _receipt);

This is intended in order to ensure that multiple validators vote on the same proposal and one validator should

usually not be able to pass a vote on his own

The _minimumVoteWeight mentioned above is computed as follows

CKP- AXIE INFINITY - AUDIT

(...)
 function _computeMinVoteWeight(
 Token.Standard _erc,
 address _token,
 uint256 _quantity,
 IWeightedValidator _validatorContract
) internal virtual returns (uint256 _weight, bool _locked) {
 uint256 _totalWeights = _validatorContract.totalWeights();
 _weight = _minimumVoteWeight(_totalWeights);
(...)

The _weight is computed as follows

164 function _minimumVoteWeight(uint256 _totalWeight) internal view virtual
returns (uint256) {
165 return (_num * _totalWeight + _denom - 1) / _denom;
166 }

However when _num and _denom are configured the only restriction is

188 function _setThreshold(uint256 _numerator, uint256 _denominator)
189 internal
190 virtual
191 returns (uint256 _previousNum, uint256 _previousDenom)
192 {
193 require(_numerator <= _denominator, "GatewayV2: invalid threshold");

_denom can be very large compared to _num To take a concrete example imagine that

 validators exist

Each validator has a weight of (_totalWeights =)

_num is

_denom is *e

This kind of configuration would put minimumVoteWeight() to

This means that any validator could validate any proposal

The value 1 has been validated with the following PoC

CKP- AXIE INFINITY - AUDIT

minimumV oteWeight() = (_num ∗ _totalWeights+ _denom− 1)/_denom

minimumV oteWeight() = (900 + 1 ∗ 10e18)/(1 ∗ 10e18)
minimumV oteWeight() = 1

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract numDenom {
 uint256 public _num;
 uint256 public _denom;
 uint256 public _totalWeights;

 constructor(){
 _denom = 1 ether;
 _num=1;
 _totalWeights=900;
 }

 function _minimumVoteWeight() public view virtual returns (uint256) {
 return (_num * _totalWeights + _denom - 1) / _denom;
 }
}

Recommendation

It is recommended to add further validation upon _denom and _num to avoid any situation where a validator could
pass a proposal by itself

Alleviation

[Ronin]
Any changes in the vote weight requirements will need to go through the voting process so the risk is minimized

CKP- AXIE INFINITY - AUDIT

CKP- FINDING DETAILS

Finding Title

Incompatibility With Deflationary Tokens

Category Severity Location Status

Volatile
Code

Minor
mainchain/MainchainGatewayVsol (audit) ronin/RoninG
atewayVsol (audit)

Acknowledged

Description

When transferring standard ERC deflationary tokens the input amount may not be equal to the received amount
due to the charged transaction fee As a result an inconsistency in the amount will occur and the transaction may

fail due to the validation checks

For example if a user deposit deflationary tokens (with a % transaction fee) into mainchain gateway contract

only tokens actually arrive in the contract However the user can still withdraw tokens (before fees) from

the contract of the ronin side which causes a lose tokens in such a transaction

Reference https//thoreum-financemediumcom/what-exploit-happened-today-for-gocerberus-and-garuda-also-

for-lokum-ybear-piggy-caramelswap-eeaf

Recommendation

We advise the client to add necessary mitigation mechanisms to keep track of accurate balances if there is a need

to support deflationary tokens

Alleviation

[Ronin]
The team acknowledged this issue and decided not to change the current codebase

CKP- AXIE INFINITY - AUDIT

https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-also-for-lokum-ybear-piggy-caramelswap-3943ee23a39f

GAC- FINDING DETAILS

Finding Title

Relayers Can Execute Any Proposal In A Certain Condition

Category Severity Location Status

Logical Issue Medium common/GovernanceAdminsol (audit) Resolved

Description

A Relayer can relay a proposal (creation of proposal and forward of signatures) on a specific chain By calling
relayProposal() relayers can

Create the proposal coming from another chain

Cast a vote for the proposal by passing signed messages from validators If the vote is passed and marked

as executable a call() will be performed

The issue is that if _minimumForVoteWeight is set to relayers might be able to pass proposal with a fake
signature because _totalForVoteWeight () would be equal to _minimumForVoteWeight ()

348 uint256 _minimumForVoteWeight = _getMinimumVoteWeight();
349 uint256 _totalForVoteWeight = _getWeights(_forVoteSigners);
350 if (_totalForVoteWeight >= _minimumForVoteWeight) {
351 _vote.status = VoteStatus.Approved;
352 (...)
353 _proposal.execute();

To abuse this behavior a malicious relayer could

Create a malicious proposal marking it as executable

Sign a vote for this proposal with his own address

Call relayProposal() to execute his proposal

Recommendation

It is recommended to add a check that

_totalForVoteWeight is >

_totalAgainstVoteWeight is >

GAC- AXIE INFINITY - AUDIT

This kind of check is already performed in the function _castVotesBySignatures()

284 uint256 _weight = _getWeight(_signer);
285 if (_weight > 0) {

Alleviation

[Ronin]

The team resolved this issue by adding the missing checks in the PR

GAC- AXIE INFINITY - AUDIT

https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/23/commits/431406749aa480fe427b8d163788a77e685db2ac

GAC- FINDING DETAILS

Finding Title

No Check That Address Is An Actual Contract

Category Severity Location Status

Logical Issue Minor common/GovernanceAdminsol (audit) � Resolved

Description

The _setValidatorContract() and _setGatewayContract() modify the value of contracts addresses but do not
validate if those addresses are valid contracts Administrators could by mistake put an address not related to a

contract

Recommendation

It is recommended to perform checks to ensure that the modified variables correspond to contract This could be

done through the following check

modifier isContract() {
 require((_isContract(msg.sender)), "only contracts are allowed");
 _;
}

function _isContract(address addr) internal view returns (bool) {
 uint256 size;
 assembly {
 size := extcodesize(addr)
 }
 return size > 0;
}

Alleviation

[Ronin]

The team resolved this issue by adding a verification on the code.length in the PR

GAC- AXIE INFINITY - AUDIT

https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/23/commits/431406749aa480fe427b8d163788a77e685db2ac

GCK- FINDING DETAILS

Finding Title

Inconsistency With Comments

Category Severity Location Status

Logical Issue Informational extensions/governance/Governancesol (audit) Resolved

Description

The comment in the Governance contract for the _castVotesBySignatures() function states

* @notice This method does not verify the proposal hash with the vote hash. Please
consider checking it before.

When looking at the functions calling _castVotesBySignatures() of them do not seem to perform the check

_castGlobalProposalBySignatures() OK

`_castProposalBySignatures() OK

_proposeGlobalProposalStructAndCastVotes() KO

_proposeProposalStructAndCastVotes() KO

Recommendation

The auditors would like to know if there is a reason for this difference of behavior If so it might be opportune to

modify the aforementioned comment

Alleviation

[Ronin]

The team acknowledged this is by design The first two functions vote for existing proposals so they need to check

the hash to make sure The last two functions create a new proposal and cast the vote right away by the creator so
you don't need to check the hash

GCK- AXIE INFINITY - AUDIT

MGV- FINDING DETAILS

Finding Title

Validators Could Be Too Powerful

Category Severity Location Status

Logical Issue Medium mainchain/MainchainGatewayVsol (audit) Acknowledged

Description

The function submitWithdrawal() verifies the signatures from validators When all signatures are verified and when
the threshold is met assets will be transferred to the user specified in the _receipt parameter

122 function submitWithdrawal(Transfer.Receipt calldata _receipt, Signature[]
calldata _signatures)
123 external
124 virtual
125 whenNotPaused
126 returns (bool _locked)
127 {
128 return _submitWithdrawal(_receipt, _signatures);
129 }

The concern is if the attacker exploited the private keys of the validators the attacker can spoof the receipt and

signatures thus stealing the funds within the contract

As the validator's logic is unknown we propose a potential workaround to add a restriction on the caller of

submitWithdrawal() and separate the caller with validators The caller could be a server that calls

submitWithdrawal() after having received the deposit events (DepositRequested)

In this way by adding another layer of verification even if the validators' private keys are compromised the attacker

cannot steal funds because the attacker needs to spoof a deposit event on the other chain

Recommendation

The above proposal serves as a discussion purpose We would also like to learn about how the Ronin network

ensures the validators' private keys are safe

Alleviation

[Ronin]
The team agreed with this suggestion and will work on it in a later stage

MGV- AXIE INFINITY - AUDIT

MGV- FINDING DETAILS

Finding Title

Using Of Default Value

Category Severity Location Status

Logical Issue Informational mainchain/MainchainGatewayVsol (audit) Acknowledged

Description

When request a deposit with a fallback function the info varaible was filled with default values meaning
info.erc is ERC20 and info.id is

 function _fallback() internal virtual whenNotPaused {
 if (msg.sender != address(wrappedNativeToken)) {
 Transfer.Request memory _request;
 _request.recipientAddr = msg.sender;
 _request.info.quantity = msg.value;
 _requestDepositFor(_request, _request.recipientAddr);
 }
 }

Recommendation

Consider upgradeable feature of the project we recommend explicitly assign values to those varaibles instead of

using the default value

Alleviation

[Ronin]

The team acknowledged this issue and decided not to change the current codebase

MGV- AXIE INFINITY - AUDIT

TCK- FINDING DETAILS

Finding Title

Potential Re-Entrancy On handleAssetTransfer()

Category Severity Location Status

Logical Issue Informational library/Tokensol (audit) � Acknowledged

Description

In the handleAssetTransfer() function of the Token contract if the _token is a Token.Standard.ERC20 the flow
is as following to send the tokens

} else if (_info.erc == Token.Standard.ERC20) {
uint256 _balance = IERC20(_token).balanceOf(address(this));

if (_balance < _info.quantity) {
 // bytes4(keccak256("mint(address,uint256)"))
 (_success,) = _token.call(abi.encodeWithSelector(0x40c10f19, address(this),
_info.quantity - _balance));
 require(_success, "Token: ERC20 minting failed");
}

transfer(_info, _to, _token);

After analysis it does not seem that a practical scenario is possible in which Ronin Network funds would be at risk

The scenario below intends to describe where the issue lies
In the hypothetical case that _token is a proxified and valuable ERC token controlled by an attacker a re-

entrancy could occur by abusing the balanceOf() function

The flow is as following

Attacker modifies the implementation of _token to modify the balanceOf() function to call

handleAssetTransfer()

Attacker calls handleAssetTransfer()

When the contract will call IERC20(_token).balanceOf(address(this)) the call will go to

handleAssetTransfer() performing the re-entrancy

It is after the re-entrancy that the transfer() call is actually performed to send the tokens making the attack

possible

TCK- AXIE INFINITY - AUDIT

Recommendation

It is recommended to apply OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

handleAssetTransfer() function to prevent reentrancy attack

Alleviation

[Ronin]

The team acknowledged this issue and decided not to change the current codebase

TCK- AXIE INFINITY - AUDIT

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

TCK- FINDING DETAILS

Finding Title

Completion Of If-Else Branch

Category Severity Location Status

Volatile Code Informational library/Tokensol (audit) � � Resolved

Description

The Token library invokes the token transfers (via transferFrom() and transfer()) Those functions first check
the token's type with an if-else branch For example

58 if (_info.erc == Standard.ERC20) {
59 (_success, _data) =

_token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, _from, _to,
_info.quantity));
60 _success = _success && (_data.length == 0 || abi.decode(_data, (bool)));
61 } else if (_info.erc == Standard.ERC721) {
62 // bytes4(keccak256("transferFrom(address,address,uint256)"))
63 (_success,) = _token.call(abi.encodeWithSelector(0x23b872dd, _from,

_to, _info.id));
64 }

The above if-else branch is not completed meaning it lacks an else branch to cover all the other situations
Since the current Standard enum only has two types it will not cause any actual issue

10 enum Standard {
11 ERC20,
12 ERC721
13 }

However considering the upgradeable feature of the contract if the library supports more types of tokens it could

lead to potential risk

Recommendation

We recommend adding an else branch to cover all the possible situations For example

TCK- AXIE INFINITY - AUDIT

 if (_info.erc == Standard.ERC20) {
 ...
 } else if (_info.erc == Standard.ERC721) {
 ...
 } else {
 revert("Token: unsupported token standard");
 }

Alleviation

[Ronin]

The team resolved this issue by adding a else branch in the PR

TCK- AXIE INFINITY - AUDIT

https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/23/commits/431406749aa480fe427b8d163788a77e685db2ac

TUP- FINDING DETAILS

Finding Title

Design Violation

Category Severity Location Status

Inconsistency Informational
extensions/TransparentUpgradeableProxyVsol (a
udit) �

Acknowledged

Description

The TransparentUpgradeableProxy is designed as follows

When users call the proxy calls are forwarded to the implementation contract with delegatecall

When an admin calls the proxy the call is executed on the proxy contract

This design is meant to prevent Proxy selector clashing attacks

The TransparentUpgradeableProxyV2 contract implemented by Ronin violates this design by allowing

administrators to call the implementation contract with the addition of the functionDelegateCall() function

Recommendation

The auditors would like to understand the reason of this choice

Alleviation

[Ronin]
We use the TransparentUpgradeableProxy to mainly avoid selector clashing issues which can cause unexpected

behavior for the Bridge

In the Ronin Bridge context we set the Governance Admin contract (GA) as the ProxyAdmin of the Validator
contract and the Gateway contract (which implements the TransparentUpgradeableProxy behind) These contracts

only allow the GA contract to modify some critical states
But the TransparentUpgradeableProxy ProxyAdmin is not allowed the to call any methods in the implementation

contract so we introduce the TransparentUpgradeableProxyV that allows the ProxyAdmin to do it by explicitly

calling the functionDelegateCall function

Thanks to this function the GA contract can call to Ronin Validator contract to retrieve governor addresses and

get/set thresholds despite it being the proxy admin

TUP- AXIE INFINITY - AUDIT

https://medium.com/nomic-foundation-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357

WLC- FINDING DETAILS

Finding Title

Inappropriate Upper Limits For Fees

Category Severity Location Status

Logical Issue Minor extensions/WithdrawalLimitationsol (audit) Acknowledged

Description

The fee is calculated via the function _computeFeePercentage()

220 function _computeFeePercentage(uint256 _amount, uint256 _percentage)
internal view virtual returns (uint256) {
221 return (_amount * _percentage) / _MAX_PERCENTAGE;
222 }

The percentage of the fee is set via function _setUnlockFeePercentages() However when setting the fee

percentage the fee percentage can be set as _MAX_PERCENTAGE meaning all the transferred asset will be collected
as fee

151 function _setUnlockFeePercentages(address[] calldata _tokens, uint256[]
calldata _percentages) internal virtual {
152 require(_tokens.length == _percentages.length, "WithdrawalLimitation:
invalid array length");
153 for (uint256 _i; _i < _tokens.length; _i++) {
154 require(_percentages[_i] <= _MAX_PERCENTAGE, "WithdrawalLimitation:
invalid percentage");
155 unlockFeePercentages[_tokens[_i]] = _percentages[_i];
156 }
157 emit UnlockFeePercentagesUpdated(_tokens, _percentages);
158 }

Recommendation

It is recommended to set a more appropriate limit the fee when calling _setUnlockFeePercentages()

Alleviation

[Ronin]

The team acknowledged this issue and decided not to change the current codebase

WLC- AXIE INFINITY - AUDIT

WLK- FINDING DETAILS

Finding Title

Questions About Tiers Model

Category Severity Location Status

Inconsistency Informational
extensions/WithdrawalLimitationsol �PR� �

Acknowledged

Description

The auditors do not see how the Tiers model is implemented through the code especially

Tiers All signatures from validators are required

Tiers All signatures from validators are required one additional human review to unlock the fund

The documentation states "There will be another constraint on the number of token that can be withdraw in a day

We propose to cap the value at $M Since withdrawal of Tier already requires human review it will not be

counted in daily withdrawal limit"

However within the _setDailyWithdrawalLimits() function there is no validation that this limit cannot be pushed

beyond M

250 function _setDailyWithdrawalLimits(address[] calldata _tokens, uint256[]
calldata _limits) internal virtual {
251 require(_tokens.length == _limits.length, "WithdrawalLimitation: invalid
array length");
252 for (uint256 _i; _i < _tokens.length; _i++) {
253 dailyWithdrawalLimit[_tokens[_i]] = _limits[_i];
254 }
255 emit DailyWithdrawalLimitsUpdated(_tokens, _limits);
256 }

Recommendation

The auditors would like to have more information about how the Tiers model is implemented through the code

Alleviation

[Ronin]

The limit is not fixed yet it is still an on-going discussion and can be changed via voting Also the limit is just another

WLK- AXIE INFINITY - AUDIT

layer of risk management We don't know the perfect numbers for the limits yet so we will need to roll it out and

measure it

WLK- AXIE INFINITY - AUDIT

OPTIMIZATIONS AXIE INFINITY - AUDIT

ID Title Category Severity Status

BMC�
Variables That Could Be Declared As

Immutable

Gas

Optimization
Optimization Resolved

OPTIMIZATIONS AXIE INFINITY - AUDIT

BMC- FINDING DETAILS

Finding Title

Variables That Could Be Declared As Immutable

Category Severity Location Status

Gas Optimization Optimization migration/BridgeMigrationsol (audit) Resolved

Description

The linked variables weth assigned in the constructor can be declared as immutable Immutable state variables
can be assigned during contract creation but will remain constant throughout the lifetime of a deployed contract A

big advantage of immutable variables is that reading them is significantly cheaper than reading from regular state
variables since they will not be stored in storage

Recommendation

It is recommended to declare these variables as immutable

Alleviation

[Ronin]
The team resolved this issue by setting the variables as ìmmutable in the PR

BMC- AXIE INFINITY - AUDIT

https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/22/commits/8e13e0bc4aac7ccb23ce6cb8fe5199f158e61dfa

APPENDIX AXIE INFINITY - AUDIT

SCSVSv Checks

CertiK used the SCSVSv referential to perform additional testing on Ronin bridge

C - Verify that bridge requires all necessary values to be included in the message and signed chain ids
receiver amount nonce

In MainchainGatewayV2 the function _submitWithdrawal() uses a receipt

 struct Receipt {
 uint256 id; //nonce
 Kind kind;
 Token.Owner mainchain;
 Token.Owner ronin;
 Token.Info info;
 }

With

 struct Info {
 Standard erc;
 // For ERC20: the id must be 0 and the quantity is larger than 0.
 // For ERC721: the quantity must be 0.
 uint256 id;
 uint256 quantity; //Quantity
 }

 struct Owner {
 address addr; //Destination
 address tokenAddr;
 uint256 chainId; //chainId
 }

In RoninGatewayV2 the function _depositFor() also uses a receipt

 struct Receipt {
 uint256 id; //nonce
 Kind kind;
 Token.Owner mainchain;
 Token.Owner ronin; //chainId
 Token.Info info;
 }

With

APPENDIX AXIE INFINITY - AUDIT

https://github.com/securing/SCSVS/blob/prerelease/SCSVSv2/2.0/0x200-Components/0x206-C6-Bridge.md

 struct Info {
 Standard erc;
 // For ERC20: the id must be 0 and the quantity is larger than 0.
 // For ERC721: the quantity must be 0.
 uint256 id;
 uint256 quantity; //Quantity
 }

 struct Owner {
 address addr; //Destination
 address tokenAddr;
 uint256 chainId; //chainId
 }

Those elements appear to be in compliance with C

C - Verify that used signatures are invalidated to protect bridge from replay attacks

Example _depositFor() - Ronin

What happens when tokens are bridged is that a proposal ReceiptVote (depositVote[.chainId][_id]) is created

 struct ReceiptVote {
 VoteStatus status; // Goes from Pending to Executed when funds are sent
 bytes32 finalHash;
 /// @dev Mapping from voter => receipt hash
 mapping(address => bytes32) receiptHash;
 /// @dev Mapping from receipt hash => vote weight
 mapping(bytes32 => uint256) weight;
 }

Once a vote is passed funds are sent and vote status is updated to Executed It is not possible to replay a proposal

because the vote will have been marked as executed

require(_vote.status == VoteStatus.Pending, "Governance: the vote is finalized");

Example _submitWithdrawal() - Mainchain What happens when tokens are withdrawn is that a receipt digest is

computed

bytes32 _receiptDigest = Transfer.receiptDigest(_domainSeparator, _receipt.hash());

The function will check that the Ronin validators signed for this particular Digest

_signer = ecrecover(_receiptDigest, _sig.v, _sig.r, _sig.s);
(...)
_weight += _validatorContract.getValidatorWeight(_signer);

APPENDIX AXIE INFINITY - AUDIT

As a consequence it is not possible to forge fake requests because it would mean having access to Ronin

Validators

In addition to avoid replay a check is performed before processing withdrawal

require(withdrawalHash[_id] == bytes32(0), "MainchainGatewayV2: query for processed
withdrawal");

If withdrawal is successful the variable is updated

withdrawalHash[_id] = _receiptHash;

Those elements appear to be in compliance with C

C - Verify that message hash generation algorithm is resistant to collision attacks

The use of keccak256() function is OK as of today June th

C - Verify that bridge includes source and destination chains identifiers in the signed message and correctly
verifies them

The verification is performed upon withdrawals

 function _submitWithdrawal(Transfer.Receipt calldata _receipt, Signature[] memory
_signatures)
(...)
require(_receipt.mainchain.chainId == block.chainid, "MainchainGatewayV2: invalid
chain id");

The verification is also performed upon deposits

 function _depositFor(Transfer.Receipt memory _receipt,address _validator,uint256
_weight,uint256 _minVoteWeight) internal {
(...)
 require(_receipt.ronin.chainId == block.chainid, "RoninGatewayV2: invalid chain
id");

Those elements appear to be in compliance with C

C - Verify that bridge does not allow to spoof chain identifier

Because of the verification performed previously in C it is not possible to spoof chain identifier

C - Verify that bridge uses a nonce parameter to allow the same operation (the same sender receiver and
amount) to be executed multiple times

A nonce is used for deposits (depositCount)

APPENDIX AXIE INFINITY - AUDIT

 uint256 _depositId = depositCount++;
 Transfer.Receipt memory _receipt = _request.into_deposit_receipt(
 _requester,
 _depositId,
 _token.tokenAddr,
 roninChainId
);

A nonce is used for withdrawals (withdrawalCount)

 uint256 _withdrawalId = withdrawalCount++;
 Transfer.Receipt memory _receipt = _request.into_withdrawal_receipt(
 _requester,
 _withdrawalId,
 _mainchainTokenAddr,
 _chainId
);

Those elements appear to be in compliance with C

C - Verify signed message cannot be used in a different context (use domain separator from EIP-)

Because of the reasons mentioned in C contracts appear to be in compliance with C Also

MainchainGateway contract uses DOMAIN SEPARATOR from EIP-

Example - For withdrawals from Ronin to other chains Domain separator is used

bytes32 _receiptDigest = Transfer.receiptDigest(_domainSeparator, _receiptHash);

This Domain Separator is unique for each chainId

function _updateDomainSeparator() internal { _domainSeparator = keccak256(
 abi.encode(
 keccak256("EIP712Domain(string name,string version,uint256 chainId,address
verifyingContract)"),
 keccak256("MainchainGatewayV2"),
 keccak256("2"),
 block.chainid,
 address(this)
)
);
 }

Finding Categories

Categories Description

APPENDIX AXIE INFINITY - AUDIT

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components

that act against the nature of decentralization such as explicit ownership or specialized access
roles in combination with a mechanism to relocate funds

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different

more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code such as an incorrect notion on

how blocktimestamp works

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge

cases that may result in a vulnerability

Language

Specific

Language Specific findings are issues that would only arise within Solidity ie incorrect usage

of private or delete

Inconsistency
Inconsistency findings refer to functions that should seemingly behave similarly yet contain

different code such as a constructor assignment imposing different require statements on the
input variables than a setter function

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA- (Secure Hash Algorithm with

digest size of bits) digest of the content of each file hosted in the listed source repository under the specified
commit

The result is hexadecimal encoded and is the same as the output of the Linux "shasum" command against the
target file

APPENDIX AXIE INFINITY - AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation description of services

confidentiality disclaimer and limitation of liability) set forth in the Services Agreement or the scope of services and
terms and conditions provided to you (“Customer” or the “Company”) in connection with the Agreement This report

provided in connection with the Services set forth in the Agreement shall be used by the Company only to the
extent permitted under the terms and conditions set forth in the Agreement This report may not be transmitted

disclosed referred to or relied upon by any person for any purposes nor may copies be delivered to any other

person other than the Company without CertiK’s prior written consent in each instance

This report is not nor should be considered an “endorsement” or “disapproval” of any particular project or team

This report is not nor should be considered an indication of the economics or value of any “product” or “asset”
created by any team or project that contracts CertiK to perform a security assessment This report does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed nor do they provide

any indication of the technologies proprietors business business model or legal compliance

This report should not be used in any way to make decisions around investment or involvement with any particular

project This report in no way provides investment advice nor should be leveraged as investment advice of any sort
This report represents an extensive assessing process intending to help our customers increase the quality of their

code while reducing the high level of risk presented by cryptographic tokens and blockchain technology

Blockchain technology and cryptographic assets present a high level of ongoing risk CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security CertiK’s goal is to help

reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies and in no way claims any guarantee of security or functionality of the technology we agree to analyze

The assessment services provided by CertiK is subject to dependencies and under continuing development You
agree that your access and/or use including but not limited to any services reports and materials will be at your

sole risk on an as-is where-is and as-available basis Cryptographic tokens are emergent technologies and carry

with them high levels of technical risk and uncertainty The assessment reports could include false positives false
negatives and other unpredictable results The services may access and depend upon multiple layers of third-

parties

ALL SERVICES THE LABELS THE ASSESSMENT REPORT WORK PRODUCT OR OTHER MATERIALS OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND TO THE MAXIMUM EXTENT PERMITTED UNDER
APPLICABLE LAW CERTIK HEREBY DISCLAIMS ALL WARRANTIES WHETHER EXPRESS IMPLIED STATUTORY OR

OTHERWISE WITH RESPECT TO THE SERVICES ASSESSMENT REPORT OR OTHER MATERIALS WITHOUT
LIMITING THE FOREGOING CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY

FITNESS FOR A PARTICULAR PURPOSE TITLE AND NON-INFRINGEMENT AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING USAGE OR TRADE PRACTICE WITHOUT LIMITING THE FOREGOING CERTIK MAKES NO
WARRANTY OF ANY KIND THAT THE SERVICES THE LABELS THE ASSESSMENT REPORT WORK PRODUCT OR

OTHER MATERIALS OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF WILL MEET CUSTOMER’S OR ANY
OTHER PERSON’S REQUIREMENTS ACHIEVE ANY INTENDED RESULT BE COMPATIBLE OR WORK WITH ANY

SOFTWARE SYSTEM OR OTHER SERVICES OR BE SECURE ACCURATE COMPLETE FREE OF HARMFUL CODE

OR ERROR-FREE WITHOUT LIMITATION TO THE FOREGOING CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER AXIE INFINITY - AUDIT

UNDERTAKING AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS ACHIEVE ANY INTENDED RESULTS BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE
APPLICATIONS SYSTEMS OR SERVICES OPERATE WITHOUT INTERRUPTION MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED

WITHOUT LIMITING THE FOREGOING NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND EXPRESS OR IMPLIED AS TO THE ACCURACY RELIABILITY OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE CERTIK WILL ASSUME NO
LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS MISTAKES OR INACCURACIES OF CONTENT AND MATERIALS

OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT OR (II)
ANY PERSONAL INJURY OR PROPERTY DAMAGE OF ANY NATURE WHATSOEVER RESULTING FROM

CUSTOMER’S ACCESS TO OR USE OF THE SERVICES ASSESSMENT REPORT OR OTHER MATERIALS

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR
CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY OWNER

OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS

THE SERVICES ASSESSMENT REPORT AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT NOR MAY COPIES BE DELIVERED TO ANY OTHER PERSON WITHOUT CERTIK’S
PRIOR WRITTEN CONSENT IN EACH INSTANCE

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF SHALL BE A THIRD PARTY OR OTHER
BENEFICIARY OF SUCH SERVICES ASSESSMENT REPORT AND ANY ACCOMPANYING MATERIALS AND NO SUCH

THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
SERVICES ASSESSMENT REPORT AND ANY ACCOMPANYING MATERIALS

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER ACCORDINGLY NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF
SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER

THIS AGREEMENT OR OTHERWISE

FOR AVOIDANCE OF DOUBT THE SERVICES INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR
MATERIALS SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL TAX LEGAL

REGULATORY OR OTHER ADVICE

DISCLAIMER AXIE INFINITY - AUDIT

CertiK Securing the Web World

Founded in by leading academics in the field of Computer Science from both Yale and Columbia University

CertiK is a leading blockchain security company that serves to verify the security and correctness of smart contracts

and blockchain-based protocols Through the utilization of our world-class technical expertise alongside our

proprietary innovative tech we’re able to support the success of our clients with best-in-class security all whilst

realizing our overarching vision provable trust for all throughout all facets of blockchain

Axie Infinity - Audit Security Assessment CertiK Verified on Jun st Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

