
Ronin Bridge
Security Analysis Audit

No. 202408211552

Aug 21st, 2024

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM



```

Ronin Bridge Security Audit

Page 2 of 38

Contents

1 Overview ........................................................................................................................................................... 7

1.1 Project Overview .................................................................................................................................... 7

1.2 Audit Overview ....................................................................................................................................... 7

1.3 Audit Method .......................................................................................................................................... 7

2 Script Audit ......................................................................................................................................... 9

2.1 20240716-p3 script code logic analysis .......................................................................................9

2.2 Check for uninitialized parameters on the chain ........................................................................11

2.3 20240807-ir-recover script code logic analysis ........................................................................ 12

2.4. Test the 20240807-ir-recover script ....................................................................................... 13

3 Contract Audit ....................................................................................................................................15

2.1 Proposal Security ...................................................................................................................... 15

[Ronin-01] Propose Function .................................................................................................. 15

[Ronin-02] CastVote Function ................................................................................................ 16

[Ronin-03] Execute Function ..................................................................................................18

[Ronin-04] DeleteExpired Function ........................................................................................ 19

[Ronin-05] RelayProposal Function ....................................................................................... 20

2.2 Cross-chain Bridge Security .................................................................................................... 23

[Ronin-06] RequestWithdrawal Function ...............................................................................23

[Ronin-07] DepositFor Function ............................................................................................ 24

[Ronin-08] SubmitWithdrawal Function .................................................................................26

[Ronin-09] UnlockWithdrawal Function ................................................................................. 28



```

Ronin Bridge Security Audit

Page 3 of 38

[Ronin-10] RequestDepositFor Function ................................................................................29

4Appendix ............................................................................................................................................31

4.1 Vulnerability Assessment Metrics and Status in Smart Contracts ............................................. 31

4.2 Audit Categories ...................................................................................................................... 34

4.3 Disclaimer ............................................................................................................................................36

4.4 About Beosin .......................................................................................................................................37



```

Ronin Bridge Security Audit

Page 4 of 38

Summary of Audit Result

The audit was divided into three parts: the first part focused on the contract audit, the second part on

the audit of the scripts that led to the attack, and the third part on the audit of the scripts intended to

fix the vulnerabilities.

In the contract audit, no major issues were found. During the audit of the

20240716-p3-upgrade-bridge-main-chain.s.sol and 20240716-p2-upgrade-bridge-ronin-chain.s.sol

scripts, the previous attack was analyzed, and potential parameter initialization issues were checked

to ensure that all parameters of the cross-chain bridge were properly initialized. It was confirmed that

only the weight parameters were not initialized.

In the third part, the 20240807-ir-recover script was reviewed, and the entire proposal execution

process was analyzed. Based on the code logic, the process to be feasible. Ultimately, the

20240807-ir-recover script passed the tests.



```

Ronin Bridge Security Audit

Page 5 of 38

 Project Description:

1. Business overview

This audit is a contract security audit of Ronin Bridge and a security audit of deployment scripts and

transactions. The audited contracts include: RoninBridgeManager, RoninGatewayV3,

MainchainBridgeManager and MainchainGatewayV3.

The RoninBridgeManager contract is the governance management contract on the Ronin chain,

responsible for creating, voting on, and executing cross-chain bridge proposals. When a proposal is

initiated by a governor, a proposal with an expiration time is created in the current round. Before the

expiration time is reached, governors with voting weight can vote on the proposal in the current round.

If the proposal's weight reaches the preset threshold before expiration, execution is determined based

on the proposal's chain ID. If the chain ID is the Ronin chain itself, the proposal will be executed by the

predefined executor within the proposal, which calls the predefined target contract’s calldata via the

BridgeManager contract. If the chain ID is Ethereum, the proposal will be suspended. Later, the

governor on Ethereum will collect the signatures within the proposal and call functions like

relayProposal in the MainchainBridgeManager contract on Ethereum to generate and create the

Ethereum proposal. Since the weight has already been verified on the Ronin chain, this transaction will

also pass the current proposal, thereby executing the data within the calldata. The

MainchainBridgeManager contract is the governance management contract on Ethereum. Since the

contract does not have a voting function, it can only process proposals that have already been signed

on the Ronin chain and passed the weight check.

The RoninGatewayV3 and MainchainGatewayV3 contracts are cross-chain bridge contracts on the

Ronin chain and Ethereum, respectively, responsible for the generation, receipt, and voting of

cross-chain Receipts. If a user wants to perform a cross-chain operation from the Ronin chain, they

can first use the requestWithdrawalFor function in the RoninGatewayV3 contract to generate a

Receipt of the kind Withdrawal, staking the corresponding tokens to the cross-chain bridge to create

the cross-chain Receipt. The user can then validate the Receipt's weight using the collected operator

signatures. Once the Receipt's weight is sufficient, the cross-chain bridge will send the corresponding

amount of tokens to the user recorded in the Receipt, thereby completing the cross-chain operation. A

similar process applies when a user wants to perform a cross-chain operation from Ethereum; they

can use the requestDepositFor function in the MainchainGatewayV3 contract to generate a Receipt of

the kind Deposit, and then vote on it on the Ronin chain to complete the cross-chain operation. It is

important to note that if the cross-chain operation involves a large amount of funds from Ronin to



```

Ronin Bridge Security Audit

Page 6 of 38

Ethereum, it may trigger a fund lock, and the corresponding Receipt will need to be unlocked by an

unlock account before the withdrawal can proceed.



```

Ronin Bridge Security Audit

Page 7 of 38

1 Overview

1.1 Project Overview

Project Name Ronin Bridge

Project Language solidity

Platform Ronin, Ethereum

Github Link https://github.com/ronin-chain/bridge-contract/

Contract Scope

/src/ronin/gateway/RoninBridgeManager.sol

/src/ronin/gateway/RoninGatewayV3.sol

/src/mainchain/MainchainBridgeManager.sol

/src/mainchain/MainchainGatewayV3.sol

Script Scope
/script/20240716-upgrade-v3.2.0-mainnet

/script/20240807-ir-recover

Audit Commit 132fcc674f46cd900c2dc6bd677379654bd7f639

Audit Transactions

Ronin Transaction:

0xf621da2b000ef3d59d04fe494e6f40b23fe4c2fc29ff32bb9cc9d61eaf28a8a3

Ethereum Transaction:

0xd9e926f03876a286cad87f21015127f7b2b949323d4b4db273c285990a9d336b

1.2 Audit Overview

Audit work duration: Aug 13, 2024 – Aug 21, 2024

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

Themanual audit is divided into three groups to cover the entire auditing process:



```

Ronin Bridge Security Audit

Page 8 of 38

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

2. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.



```

Ronin Bridge Security Audit

Page 9 of 38

2 Script Audit

2.1 20240716-p3 script code logic analysis

This script is related to the previous Ronin Bridge attack. The focus is on analyzing its logic to identify

any other potential issues.

Figure 1 Run function screenshot

The run function serves as the entry point for the entire script and primarily handles the migration and

upgrade of the bridge manager on the Ronin mainnet. First, it loads the new bridge manager contract

instance on the Ronin mainnet. Then, it switches to the companion network (Ethereum mainnet) to

load the current main chain bridge manager instance. After performing checks and outputting

information, the function switches back to the Ronin network to set the addresses of the old and new

bridge managers. Next, it calls _prankChangeAdminMainchainBM() to impersonate an admin and

change the permissions of the main chain bridge manager. Finally, it invokes

_upgradeBridgeMainchain() to complete the logic upgrade of themain chain bridgemanager.



```

Ronin Bridge Security Audit

Page 10 of 38

Figure 2 _upgradeBridgeMainchain function screenshot(1/2)

Figure 3 _upgradeBridgeMainchain function screenshot(2/2)

The _upgradeBridgeMainchain function primarily handles the upgrade of the main chain bridge

manager and creates a proposal containing several critical steps. Specifically, the function first

switches to the companion network and deploys the new contract logic. Next, it sets the mapping rules

for the WBTC token using mapTokensAndThresholds, upgrades and initializes the Mainchain Gateway

V3 logic contract using initializeV4, sets the new bridge manager address, and changes the admin

permissions. All these actions are bundled into a proposal, which includes steps such as

mapTokensAndThresholds and initializeV4, and is eventually executed by calling the relayProposal

function on the old bridgemanager contract.



```

Ronin Bridge Security Audit

Page 11 of 38

2.2 Check for uninitialized parameters on the chain

Based on the script(20240716-p3) code analysis, the migration script's execution logic can be

combined with the on-chain code to check whether, aside from the missing weight updates, there are

any other uninitialized parameters in the actual on-chain environment.

Figure 4mapTokensAndThresholds function screenshot

Figure 5 initializeV4 function screenshot

The first call in the proposal is the mapTokensAndThresholds function, which initializes token

mappings and related threshold parameters. It takes the token addresses on the main chain and Ronin

network, token standards, and an array containing four types of thresholds. This function maps the

tokens to the Ronin network and sets the high-tier thresholds, locked thresholds, unlock fee

percentages, and daily withdrawal limits. The second call is the initializeV4 function, used to initialize

theWETH address. Apart from these initialization operations, the proposal does not involve updates to

other contract parameters.

Combining on-chain contract data and code analysis, it is confirmed that the contract currently lacks

updates for _operatorWeight and _totalOperatorWeight. Now there are two ways to solve this problem:

the first is to directly utilize the onBridgeOperatorsAdded function that already exists in the current

contract to update the operator's weights; the second is to upgrade the contract and implement the

initializeV5 function in the upgraded contract to update the weights.



```

Ronin Bridge Security Audit

Page 12 of 38

Figure 6 onBridgeOperatorsAdded function screenshot

2.3 20240807-ir-recover script code logic analysis

This section provides an analysis of the script logic used to fix the vulnerability, and based on this

analysis, confirms the feasibility of the fix.

Figure 7 run function screenshot

The script logic is generally divided into four steps:

1. _preCheck_Withdrawable: Perform a preliminary check by simulating operations to cancel the pause

and ensure that funds can be withdrawn normally.

2. _perform_PrankFix: Execute the fix by creating a proposal and calling the onBridgeOperatorsAdded

function within the proposal to set the weights.

3. _perform_checkAfterPrankFix: Check after the fix to ensure that withdrawal operations can

proceed normally.

4. _performCreateProposalOnRonin: Initiate a proposal on the Ronin chain.



```

Ronin Bridge Security Audit

Page 13 of 38

2.4. Test the 20240807-ir-recover script

This section describes the execution of the fix script and assesses whether it effectively resolves the

vulnerability based on the test results.

Script execution test screenshot:

Screenshot of the run function call in the script:

Successful withdrawals were made using fake credentials, confirming that the vulnerability persisted

after the suspension was lifted.

The onBridgeOperatorsAdded function was successfully called through the proposal, and the weights

were successfully updated.

After verifying the updated weights, another attempt to withdraw token failed, proving the vulnerability

had been fixed.



```

Ronin Bridge Security Audit

Page 14 of 38



```

Ronin Bridge Security Audit

Page 15 of 38

3 Contract Audit

2.1 Proposal Security

[Ronin-01] Propose Function

Lines RoninBridgeManager.sol#L35-57

Description The _proposeProposalStruct function allows a governor to create a

corresponding callback proposal. The proposal includes information such as the

target contract to be called, callback data, and expiration time. Subsequent

voting can be done using functions like castProposalBySignatures. The

propose function can only be called by the Governor, and the expiration of the

old proposal will be checked when creating a proposal. When the old proposal

expires, the current proposal will replace the round of the old proposal, thus

ensuring the safety of the round. Creating a proposal requires classifying the

proposal's chainid, which affects whether the subsequent voting type is a

signed vote or an unsigned vote.

function _proposeProposalStruct(Proposal.ProposalDetail memory

proposal, address creator) internal virtual returns (uint256 round_) {

uint256 chainId = proposal.chainId;

if (chainId == 0) revert ErrInvalidChainId(msg.sig, 0,

block.chainid);

proposal.validate(_proposalExpiryDuration);

bytes32 proposalHash = proposal.hash();

round_ = _createVotingRound(chainId);

_saveVotingRound(vote[chainId][round_], proposalHash,

proposal.expiryTimestamp);

if (round_ != proposal.nonce) revert

ErrInvalidProposalNonce(msg.sig);

emit ProposalCreated(chainId, round_, proposalHash, proposal,

creator);

}



```

Ronin Bridge Security Audit

Page 16 of 38

[Ronin-02] CastVote Function

Lines RoninBridgeManager.sol#L67-73

Description The _castVote function allows voting on the proposal for the current round, but

the voting process is divided into two types: signed voting and unsigned voting.

Signed voting is typically used for cross-chain proposals, where the chainid is

not 2020. In this type of voting, a signature is recorded during the voting

process. Once the signature weight of the entire proposal accumulates

sufficiently, the governor will handle the signature list on the corresponding

chain of the proposal in the form of a RelayPropose. Unsigned voting is

generally used for proposals on the current chain. When the weight

accumulates sufficiently, the current chain's calldata will be invoked. After each

governor votes, the contract records the signature hash for the corresponding

proposal to prevent the reuse of signatures for the same proposal, ensuring the

security of the signatures.

function _castVote(

Proposal.ProposalDetail memory proposal,

Ballot.VoteType support,

uint256 minimumForVoteWeight,

uint256 minimumAgainstVoteWeight,

address voter,

Signature memory signature,

uint256 voterWeight

) internal virtual returns (bool done) {

uint256 chainId = proposal.chainId;

uint256 round_ = proposal.nonce;

ProposalVote storage _vote = vote[chainId][round_];

if (_tryDeleteExpiredVotingRound(_vote)) {

return true;

}

if (round[proposal.chainId] != round_) revert

ErrInvalidProposalNonce(msg.sig);

if (_vote.status != VoteStatus.Pending) revert

ErrVoteIsFinalized();

if (_voted(_vote, voter)) revert ErrAlreadyVoted(voter);

_vote.voted[voter] = true;

// Stores the signature if it is not empty

if (signature.r > 0 || signature.s > 0 || signature.v > 0) {



```

Ronin Bridge Security Audit

Page 17 of 38

_vote.sig[voter] = signature;

}

emit ProposalVoted(_vote.hash, voter, support, voterWeight);

uint256 _forVoteWeight;

uint256 _againstVoteWeight;

if (support == Ballot.VoteType.For) {

_vote.forVoteds.push(voter);

_forVoteWeight = _vote.forVoteWeight += voterWeight;

} else if (support == Ballot.VoteType.Against) {

_vote.againstVoteds.push(voter);

_againstVoteWeight = _vote.againstVoteWeight += voterWeight;

} else {

revert ErrUnsupportedVoteType(msg.sig);

}

if (_forVoteWeight >= minimumForVoteWeight) {

done = true;

_vote.status = VoteStatus.Approved;

emit ProposalApproved(_vote.hash);

if (proposal.isAutoExecute()) {

_tryExecute(_vote, proposal);

}

} else if (_againstVoteWeight >= minimumAgainstVoteWeight) {

done = true;

_vote.status = VoteStatus.Rejected;

emit ProposalRejected(_vote.hash);

}

}



```

Ronin Bridge Security Audit

Page 18 of 38

[Ronin-03] Execute Function

Lines RoninBridgeManager.sol#L187-189

Description The execute function is called by the proposal’s executor to attempt to execute

the proposal, invoking the calldata on the target contract with the contract's

authority. When executing a proposal call, the contract checks whether the

hash of the currently passed proposal is consistent with the hash of the ledger

vote, and checks the voting status and whether the caller is the executor of the

proposal. These checks ensure the completeness of the proposal execution.

function _executeWithCaller(Proposal.ProposalDetail memory proposal,

address caller) internal {

bytes32 proposalHash = proposal.hash();

ProposalVote storage _vote =

vote[proposal.chainId][proposal.nonce];

if (_vote.hash != proposalHash) {

revert ErrInvalidProposal(proposalHash, _vote.hash);

}

if (_vote.status != VoteStatus.Approved) revert

ErrProposalNotApproved();

if (caller != proposal.executor) revert ErrInvalidExecutor();

_tryExecute(_vote, proposal);

}



```

Ronin Bridge Security Audit

Page 19 of 38

[Ronin-04] DeleteExpired Function

Lines RoninBridgeManager.sol#L208-213

Description The deleteExpired function allows for manually deleting expired proposals. It is

important to note that even if deleteExpired is not called, expired proposals can

still be automatically deleted when creating new proposals. When creating a

proposal, the contract will call the _tryDeleteExpiredVotingRound function to

delete the expired proposal according to the current proposal status. This

ensures the security of the contract round.

function _tryDeleteExpiredVotingRound(ProposalVote storage

proposalVote) internal returns (bool isExpired) {

isExpired = _getChainType() == ChainType.RoninChain &&

proposalVote.status == VoteStatus.Pending &&

proposalVote.expiryTimestamp <= block.timestamp;

if (isExpired) {

emit ProposalExpired(proposalVote.hash);

for (uint256 _i; _i < proposalVote.forVoteds.length;) {

delete proposalVote.voted[proposalVote.forVoteds[_i]];

delete proposalVote.sig[proposalVote.forVoteds[_i]];

unchecked {

++_i;

}}

for (uint256 _i; _i < proposalVote.againstVoteds.length;) {

delete proposalVote.voted[proposalVote.againstVoteds[_i]];

delete proposalVote.sig[proposalVote.againstVoteds[_i]];

unchecked {

++_i;

}

}

delete proposalVote.status;

delete proposalVote.hash;

delete proposalVote.againstVoteWeight;

delete proposalVote.forVoteWeight;

delete proposalVote.forVoteds;

delete proposalVote.againstVoteds;

delete proposalVote.expiryTimestamp;

}

}



```

Ronin Bridge Security Audit

Page 20 of 38

[Ronin-05] RelayProposal Function

Lines MainchainBridgeManager.sol#L39-46

Description The relayProposal function can relay proposals that have already been passed

on the Ronin chain. When the Ethereum-type proposal on the Ronin chain has

sufficient weight to pass, the governor can collect the corresponding

signatures in the proposal and use the relayProposal function to create and

execute the corresponding proposal. relayProposal will only be executed when

the proposal of the ronin chain is passed, and cannot be executed by voting

alone in Ethereum, this design pattern ensures that voting on proposals is

conducted on the ronin chain, making it easier to carry out and manage

proposals.

function _relayVotesBySignatures(

Proposal.ProposalDetail memory _proposal,

Ballot.VoteType[] calldata _supports,

Signature[] calldata _signatures,

bytes32 proposalHash

) internal {

if (!(_supports.length > 0 && _supports.length ==

_signatures.length)) revert ErrLengthMismatch(msg.sig);

bytes32 _forDigest =

ECDSA.toTypedDataHash(_proposalDomainSeparator(),

Ballot.hash(proposalHash, Ballot.VoteType.For));

bytes32 _againstDigest =

ECDSA.toTypedDataHash(_proposalDomainSeparator(),

Ballot.hash(proposalHash, Ballot.VoteType.Against));

address[] memory _forVoteSigners = new

address[](_signatures.length);

address[] memory _againstVoteSigners = new

address[](_signatures.length);

{

uint256 _forVoteCount;

uint256 _againstVoteCount;

{

address _signer;

address _lastSigner;

Ballot.VoteType _support;

Signature calldata _sig;



```

Ronin Bridge Security Audit

Page 21 of 38

for (uint256 _i; _i < _signatures.length;) {

_sig = _signatures[_i];

_support = _supports[_i];

if (_support == Ballot.VoteType.For) {

_signer = ECDSA.recover(_forDigest, _sig.v, _sig.r, _sig.s);

_forVoteSigners[_forVoteCount++] = _signer;

} else if (_support == Ballot.VoteType.Against) {

_signer = ECDSA.recover(_againstDigest, _sig.v, _sig.r,

_sig.s);

_againstVoteSigners[_againstVoteCount++] = _signer;

} else {

revert ErrUnsupportedVoteType(msg.sig);

}

if (_lastSigner >= _signer) revert ErrInvalidOrder(msg.sig);

_lastSigner = _signer;

unchecked {

++_i;

}

}

}

assembly {

mstore(_forVoteSigners, _forVoteCount)

mstore(_againstVoteSigners, _againstVoteCount)

}

}

ProposalVote storage _vote =

vote[_proposal.chainId][_proposal.nonce];

uint256 _minimumForVoteWeight = _getMinimumVoteWeight();

uint256 _totalForVoteWeight = _sumWeight(_forVoteSigners);

if (_totalForVoteWeight >= _minimumForVoteWeight) {

if (_totalForVoteWeight == 0) revert

ErrInvalidVoteWeight(msg.sig);

_vote.status = VoteStatus.Approved;

emit ProposalApproved(_vote.hash);

_tryExecute(_vote, _proposal);

return;

}

uint256 _minimumAgainstVoteWeight = _getTotalWeight() -

_minimumForVoteWeight + 1;



```

Ronin Bridge Security Audit

Page 22 of 38

uint256 _totalAgainstVoteWeight = _sumWeight(_againstVoteSigners);

if (_totalAgainstVoteWeight >= _minimumAgainstVoteWeight) {

if (_totalAgainstVoteWeight == 0) revert

ErrInvalidVoteWeight(msg.sig);

_vote.status = VoteStatus.Rejected;

emit ProposalRejected(_vote.hash);

return;

}

revert ErrRelayFailed(msg.sig);

}



```

Ronin Bridge Security Audit

Page 23 of 38

2.2 Cross-chain Bridge Security

[Ronin-06] RequestWithdrawal Function

Lines RoninGatewayV3.sol#L208-210

Description The requestWithdrawalFor function can generate a cross-chain Receipt on the

Ronin chain. If the user later obtains enough weighted signatures, they can use

the corresponding cross-chain Receipt and signatures on Ethereum to

withdraw funds. It is important to note that when withdrawing corresponding

cross-chain funds from Ethereum, there is a fund threshold. If the withdrawal

amount exceeds this threshold, a specific unlock account will need to call the

unlockWithdrawal function to unlock the corresponding Receipt for

withdrawal.The generation of the receipt includes the kind of Withdrawal type.

This type of receipt can only be redeemed on Ethereum, which ensures the

legitimacy of the receipt.

function _requestWithdrawalFor(Transfer.Request calldata _request,

address _requester, uint256 _chainId) internal {

_request.info.validate();

_checkWithdrawal(_request);

MappedToken memory _token = getMainchainToken(_request.tokenAddr,

_chainId);

if (_request.info.erc != _token.erc) revert

ErrInvalidTokenStandard();

_request.info.handleAssetIn(_requester, _request.tokenAddr);

_storeAsReceipt(_request, _chainId, _requester, _token.tokenAddr);

}



```

Ronin Bridge Security Audit

Page 24 of 38

[Ronin-07] DepositFor Function

Lines RoninGatewayV3.sol#L146-148

Description The depositFor function allows the Operator to vote on the generated Receipt

on Ethereum. Once the Receipt accumulates sufficient weight, the contract will

send the corresponding cross-chain funds to the user recorded in the Receipt.

When withdrawing funds, the chainid and kind types are checked to avoid

multiple chains being reused. This cross-chain withdrawal requires enough

operators to call and vote, which ensures the overall security of the receipt.

function _depositFor(Transfer.Receipt memory receipt, address

operator, uint256 minVoteWeight) internal {

uint256 id = receipt.id;

receipt.info.validate();

if (receipt.kind != Transfer.Kind.Deposit) revert

ErrInvalidReceiptKind();

if (receipt.ronin.chainId != block.chainid) revert

ErrInvalidChainId(msg.sig, receipt.ronin.chainId, block.chainid);

MappedToken memory token =

getMainchainToken(receipt.ronin.tokenAddr,

receipt.mainchain.chainId);

if (!(token.erc == receipt.info.erc && token.tokenAddr ==

receipt.mainchain.tokenAddr)) {

revert ErrInvalidReceipt();

}

IsolatedGovernance.Vote storage _proposal =

depositVote[receipt.mainchain.chainId][id];

bytes32 _receiptHash = receipt.hash();

VoteStatus status = _castIsolatedVote(_proposal, operator,

minVoteWeight, _receiptHash);

emit DepositVoted(operator, id, receipt.mainchain.chainId,

_receiptHash);

IBridgeTracking bridgeTrackingContract =

IBridgeTracking(getContract(ContractType.BRIDGE_TRACKING));

if (status == VoteStatus.Approved) {

_proposal.status = VoteStatus.Executed;

receipt.info.handleAssetOut(payable(receipt.ronin.addr),

receipt.ronin.tokenAddr, IWETH(address(0)));

bridgeTrackingContract.handleVoteApproved(IBridgeTracking.VoteK



```

Ronin Bridge Security Audit

Page 25 of 38

ind.Deposit, receipt.id);

emit Deposited(_receiptHash, receipt);

}

bridgeTrackingContract.recordVote(IBridgeTracking.VoteKind.Depos

it, receipt.id, operator);

}



```

Ronin Bridge Security Audit

Page 26 of 38

[Ronin-08] SubmitWithdrawal Function

Lines MainchainGatewayV3.sol#L173-175

Description If a user has obtained enough weighted signatures, they can call the

submitWithdrawal function and pass in the signature list to use the operator's

signatures to verify the weight of the Receipt, thereby claiming the cross-chain

funds. It is important to note that when withdrawing corresponding cross-chain

funds from Ethereum, there is a fund threshold. If the withdrawal amount

exceeds this threshold, a specific unlock account will need to call the

unlockWithdrawal function to unlock the corresponding Receipt for withdrawal.

function _submitWithdrawal(Transfer.Receipt calldata receipt,

Signature[] memory signatures) internal virtual returns (bool locked)

{

uint256 id = receipt.id;

uint256 quantity = receipt.info.quantity;

address tokenAddr = receipt.mainchain.tokenAddr;

receipt.info.validate();

if (receipt.kind != Transfer.Kind.Withdrawal) revert

ErrInvalidReceiptKind();

if (receipt.mainchain.chainId != block.chainid) {

revert ErrInvalidChainId(msg.sig, receipt.mainchain.chainId,

block.chainid);

}

MappedToken memory token =

getRoninToken(receipt.mainchain.tokenAddr);

if (!(token.erc == receipt.info.erc && token.tokenAddr ==

receipt.ronin.tokenAddr && receipt.ronin.chainId == roninChainId)) {

revert ErrInvalidReceipt();

}

if (withdrawalHash[id] != 0) revert

ErrQueryForProcessedWithdrawal();

if (!(receipt.info.erc == TokenStandard.ERC721

|| !_reachedWithdrawalLimit(tokenAddr, quantity))) {

revert ErrReachedDailyWithdrawalLimit();

}

bytes32 receiptHash = receipt.hash();

bytes32 receiptDigest = Transfer.receiptDigest(_domainSeparator,

receiptHash);



```

Ronin Bridge Security Audit

Page 27 of 38

uint256 minimumWeight;

(minimumWeight, locked) = _computeMinVoteWeight(receipt.info.erc,

tokenAddr, quantity);

{

bool passed;

address signer;

address lastSigner;

Signature memory sig;

uint256 accumWeight;

for (uint256 i; i < signatures.length; i++) {

sig = signatures[i];

signer = ECDSA.recover({ hash: receiptDigest, v: sig.v, r: sig.r,

s: sig.s });

if (lastSigner >= signer) revert ErrInvalidOrder(msg.sig);

lastSigner = signer;

uint256 w = _getWeight(signer);

if (w == 0) revert ErrInvalidSigner(signer, w, sig);

accumWeight += w;

if (accumWeight >= minimumWeight) {

passed = true;

break;

}

}

if (!passed) revert ErrQueryForInsufficientVoteWeight();

withdrawalHash[id] = receiptHash;

}

if (locked) {

withdrawalLocked[id] = true;

emit WithdrawalLocked(receiptHash, receipt);

return locked;

}

_recordWithdrawal(tokenAddr, quantity);

receipt.info.handleAssetOut(payable(receipt.mainchain.addr),

tokenAddr, wrappedNativeToken);

emit Withdrew(receiptHash, receipt);

}



```

Ronin Bridge Security Audit

Page 28 of 38

[Ronin-09] UnlockWithdrawal Function

Lines MainchainGatewayV3.sol#L180-205

Description If the amount of cross-chain funds to be claimed by the user is large enough,

the Receipt will be locked. At this time, the unlock account will need to call the

unlockWithdrawal function to unlock the Receipt so that the user can claim the

corresponding cross-chain funds. When performing the unlocking operation, a

portion of the funds will be used as commission for the unlock account, which

ensures the enthusiasm for the unlock account.

function unlockWithdrawal(Transfer.Receipt calldata receipt) external

onlyRole(WITHDRAWAL_UNLOCKER_ROLE) {

bytes32 _receiptHash = receipt.hash();

if (withdrawalHash[receipt.id] != receipt.hash()) {

revert ErrInvalidReceipt();

}

if (!withdrawalLocked[receipt.id]) {

revert ErrQueryForApprovedWithdrawal();

}

delete withdrawalLocked[receipt.id];

emit WithdrawalUnlocked(_receiptHash, receipt);

address token = receipt.mainchain.tokenAddr;

if (receipt.info.erc == TokenStandard.ERC20) {

TokenInfo memory feeInfo = receipt.info;

feeInfo.quantity = _computeFeePercentage(receipt.info.quantity,

unlockFeePercentages[token]);

TokenInfo memory withdrawInfo = receipt.info;

withdrawInfo.quantity = receipt.info.quantity - feeInfo.quantity;

feeInfo.handleAssetOut(payable(msg.sender), token,

wrappedNativeToken);

withdrawInfo.handleAssetOut(payable(receipt.mainchain.addr),

token, wrappedNativeToken);

} else {

receipt.info.handleAssetOut(payable(receipt.mainchain.addr),

token, wrappedNativeToken);

}

emit Withdrew(_receiptHash, receipt);

}



```

Ronin Bridge Security Audit

Page 29 of 38

[Ronin-10] RequestDepositFor Function

Lines MainchainGatewayV3.sol#L156-158

Description The requestDepositFor function can generate a cross-chain Receipt on

Ethereum. Subsequently, the operator on the Ronin chain can vote on the

Receipt. Once the accumulated weight of the votes is sufficient, the contract

will send the corresponding cross-chain funds to the user recorded in the

Receipt. This withdrawal method is convenient for users to make manual

proposals, but it requires sufficient security protection for the operator's

signature.

function _requestDepositFor(Transfer.Request memory _request, address

_requester) internal virtual {

MappedToken memory _token;

address _roninWeth = address(wrappedNativeToken);

_request.info.validate();

if (_request.tokenAddr == address(0)) {

if (_request.info.quantity != msg.value) revert

ErrInvalidRequest();

_token = getRoninToken(_roninWeth);

if (_token.erc != _request.info.erc) revert

ErrInvalidTokenStandard();

_request.tokenAddr = _roninWeth;

} else {

if (msg.value != 0) revert ErrInvalidRequest();

_token = getRoninToken(_request.tokenAddr);

if (_token.erc != _request.info.erc) revert

ErrInvalidTokenStandard();

_request.info.handleAssetIn(_requester, _request.tokenAddr);

if (_roninWeth == _request.tokenAddr) {

wrappedNativeToken.approve(address(wethUnwrapper),

_request.info.quantity);

wethUnwrapper.unwrap(_request.info.quantity);

}

}

uint256 _depositId = depositCount++;

Transfer.Receipt memory _receipt =

_request.into_deposit_receipt(_requester, _depositId,

_token.tokenAddr, roninChainId);



```

Ronin Bridge Security Audit

Page 30 of 38

emit DepositRequested(_receipt.hash(), _receipt);

}



```

Ronin Bridge Security Audit

Page 31 of 38

4 Appendix

4.1 Vulnerability Assessment Metrics and Status in Smart Contracts

4.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```

Ronin Bridge Security Audit

Page 32 of 38

4.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

4.1.3 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.



```

Ronin Bridge Security Audit

Page 33 of 38

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

4.1.4 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```

Ronin Bridge Security Audit

Page 34 of 38

4.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

SPL Token Standards

Visibility Specifiers

Lamport Check

Account Check

Signer Check

Program Id Check

Deprecated Items

Redundant Code

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-randomNumber Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

Returned Value Security

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions



```

Ronin Bridge Security Audit

Page 35 of 38

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Solidity language should fix the compiler version and do not use

deprecated keywords.

 General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.



```

Ronin Bridge Security Audit

Page 36 of 38

4.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.



```

Ronin Bridge Security Audit

Page 37 of 38

4.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Script Audit
	2.1 20240716-p3 script code logic analysis
	2.2 Check for uninitialized parameters on the chai
	2.3 20240807-ir-recover script code logic analysis
	2.4. Test the 20240807-ir-recover script

	3 Contract Audit
	2.1 Proposal Security
	[Ronin-01] Propose Function
	[Ronin-02] CastVote Function
	[Ronin-03] Execute Function
	[Ronin-04] DeleteExpired Function
	[Ronin-05] RelayProposal Function

	2.2 Cross-chain Bridge Security
	[Ronin-06] RequestWithdrawal Function
	[Ronin-07] DepositFor Function
	[Ronin-08] SubmitWithdrawal Function
	[Ronin-09] UnlockWithdrawal Function
	[Ronin-10] RequestDepositFor Function


	4 Appendix
	4.1 Vulnerability Assessment Metrics and Status in
	4.2 Audit Categories
	4.3 Disclaimer
	4.4 About Beosin


