ecurity Analysis Audit
No. 202408211552

Aug 21%, 2024

“"W"' :

Ronin Bridge Security Audit

Contents
10verview 7
T T PIrOJECT DVEIVIBW ..ttt ettt b ettt b et b ettt ettt ettt ebe e 7
1.2 AUGIT OVEIVIBW ..ttt sttt ettt ettt b e bttt e bbb et eae b ee 7
1.3 AUAIE METNOM ...ttt s e s s s s s s s e s s e s esesesesenenens 7
2 Script Audit 9
2.120240716-p3 script code [0giC @NalYSIS ...ceiiruriiiiiiiiieeeeiieeeeieee ettt et reee e 9
2.2 Check for uninitialized parameters on the Chain ... N
2.320240807-ir-recover script code 10GiC @nalySiSccocuuiieiiiiiieeiiiiiieiiiiee e 12
2.4. Test the 20240807-Ir-rECOVET SCIIPT e 13
3 Contract Audit 15
A B o] o T 1T | IS 1Yo U 1 PP PPPPPPPPPPPPRE 15
[RONIN-0T] PropoSe FUNCIION ..uvviieiie ettt ettt e e et e e eaeeeeaaee s 15
[RONIN=02] CaSTVOTE FUNCEION weeeeeeeeee e et e e e e e e e e e e e e e e e e s e e eseaeeeeeas 16
[RONIN=03] EXECULE FUNCTION 1ttt ettt et e s eeeesanneeas 18
[Ronin-04] DeleteEXPired FUNCLION ...ooviiiciie ettt e e v e e eanee s 19
[Ronin-05] RelayProposal FUNCLIONccuiieiiieeciie ettt et e e e e 20
2.2 CrosS-Chain Bridge SECUITY .eueviiiiiiiiiiiiiiiiiiiiiieeeeeterer ettt e e e eee e e e e eeeeeeeeeseeeseeerereseeeeaseesseseseees 23
[Ronin-06] RequestWithdrawal FUNCLIONccviiiieeeeeee et 23
[RONIN-07] DePOSItFOr FUNCLION c.vviieeiie et ettt ettt ettt et e eeaae e eeaeeeeaeeeeaeeenns 24
[RoNiN-08] SUbMIitWithdrawal FUNCTION «...eeeeeeeee ettt e e 26
[Ronin-09] UnlockWithdrawal FUNCLION ..cc.cevuiiiiiiiiieieeterie ettt 28

Page 2 of 38

Ronin Bridge Security Audit

[Ronin-10] RequestDepoSitFOr FUNCLION . c.uiieeie ettt et 29

4 Appendix 31
4.1 Vulnerability Assessment Metrics and Status in Smart Contracts.....cccoecceeeeviieciiniiicienineeeen. 31

LN A NU Lo 1 0= €= o] 41 PSPPSR PRSP UPPUPTPPPPP 34

B3 DISCIAIME .ttt b ettt h bttt h bttt et b bbbt et b e b bt ebea 36

L4 ADOUT BEOSIN ..ottt sttt sttt 37

Page 3 of 38

Ronin Bridge Security Audit

Summary of Audit Result

The audit was divided into three parts: the first part focused on the contract audit, the second part on
the audit of the scripts that led to the attack, and the third part on the audit of the scripts intended to
fix the vulnerabilities.

In the contract audit, no major issues were found. During the audit of the
20240716-p3-upgrade-bridge-main-chain.s.sol and 20240716-p2-upgrade-bridge-ronin-chain.s.sol
scripts, the previous attack was analyzed, and potential parameter initialization issues were checked
to ensure that all parameters of the cross-chain bridge were properly initialized. It was confirmed that
only the weight parameters were not initialized.

In the third part, the 20240807-ir-recover script was reviewed, and the entire proposal execution
process was analyzed. Based on the code logic, the process to be feasible. Ultimately, the

20240807-ir-recover script passed the tests.

Page 4 of 38

; Ronin Bridge Security Audit

® Project Description:
1. Business overview

This audit is a contract security audit of Ronin Bridge and a security audit of deployment scripts and
transactions. The audited contracts include: RoninBridgeManager, RoninGatewayV3,

MainchainBridgeManager and MainchainGatewayV3.

The RoninBridgeManager contract is the governance management contract on the Ronin chain,
responsible for creating, voting on, and executing cross-chain bridge proposals. When a proposal is
initiated by a governor, a proposal with an expiration time is created in the current round. Before the
expiration time is reached, governors with voting weight can vote on the proposal in the current round.
If the proposal's weight reaches the preset threshold before expiration, execution is determined based
on the proposal's chain ID. If the chain ID is the Ronin chain itself, the proposal will be executed by the
predefined executor within the proposal, which calls the predefined target contract’s calldata via the
BridgeManager contract. If the chain ID is Ethereum, the proposal will be suspended. Later, the
governor on Ethereum will collect the signatures within the proposal and call functions like
relayProposal in the MainchainBridgeManager contract on Ethereum to generate and create the
Ethereum proposal. Since the weight has already been verified on the Ronin chain, this transaction will
also pass the current proposal, thereby executing the data within the calldata. The
MainchainBridgeManager contract is the governance management contract on Ethereum. Since the
contract does not have a voting function, it can only process proposals that have already been signed

on the Ronin chain and passed the weight check.

The RoninGatewayV3 and MainchainGatewayV3 contracts are cross-chain bridge contracts on the
Ronin chain and Ethereum, respectively, responsible for the generation, receipt, and voting of
cross-chain Receipts. If a user wants to perform a cross-chain operation from the Ronin chain, they
can first use the requestWithdrawalFor function in the RoninGatewayV3 contract to generate a
Receipt of the kind Withdrawal, staking the corresponding tokens to the cross-chain bridge to create
the cross-chain Receipt. The user can then validate the Receipt's weight using the collected operator
signatures. Once the Receipt's weight is sufficient, the cross-chain bridge will send the corresponding
amount of tokens to the user recorded in the Receipt, thereby completing the cross-chain operation. A
similar process applies when a user wants to perform a cross-chain operation from Ethereum; they
can use the requestDepositFor function in the MainchainGatewayV3 contract to generate a Receipt of
the kind Deposit, and then vote on it on the Ronin chain to complete the cross-chain operation. It is

important to note that if the cross-chain operation involves a large amount of funds from Ronin to

Page 5 of 38

Ronin Bridge Security Audit

Ethereum, it may trigger a fund lock, and the corresponding Receipt will need to be unlocked by an

unlock account before the withdrawal can proceed.

Page 6 of 38

Ronin Bridge Security Audit

10verview

1.1Project Overview

Project Name Ronin Bridge
Project Language solidity
Platform Ronin, Ethereum
Github Link https://github.com/ronin-chain/bridge-contract/

/src/ronin/gateway/RoninBridgeManager.sol

/src/ronin/gateway/RoninGatewayV3.sol

Contract Scope)]) o
/src/mainchain/MainchainBridgeManager.sol
/src/mainchain/MainchainGatewayV3.sol
. /script/20240716-upgrade-v3.2.0-mainnet
Script Scope . .
/script/20240807-ir-recover
Audit Commit 132fccb74f46cd900c2dcbbd677379654bd7f639

Ronin Transaction:
0xf621da2b000ef3d59d04fe494e6f40b23fe4c2fc29ff32bb9cc9dbleaf28a8a3
Ethereum Transaction:
0xd9e926f03876a286cad87f21015127f7b2b949323d4b4db273c285990a9d336b

Audit Transactions

1.2 Audit Overview

Audit work duration: Aug 13, 2024 - Aug 21, 2024

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:
1. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This
ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safequarding the accuracy of the contract's business logic.

The manual audit is divided into three groups to cover the entire auditing process:

Page 7 of 38

Ronin Bridge Security Audit

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

The Simulated Attack Group is responsible for analyzing the audited project based on the collected
historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third
parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.
2. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.
Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,
such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.

Page 8 of 38

Ronin Bridge Security Audit

2 Script Audit

2.120240716-p3 script code logic analysis

This script is related to the previous Ronin Bridge attack. The focus is on analyzing its logic to identify

any other potential issues.

n run() 21 onlyOn(DefaultNetwork.RoninMainnet.key
console.log("== n".bold().cyan());

_newwRoninBridgeManager = IRoninBridgeManager(loadContract(Contract.RoninBridgeManager.key()));
_currentNetwork = network();

companionNet = config CompanionNetwork(currentNetwork) ;
TNetwork prevNetwork, uin prevrorkId) = switchTo(_companionNetwork) ;

_currMainchainBridgeManager = IMainchainBridgeManager(@xa71456fA88a5f6a4696D@446E6960b4a5913fab0);

console.log(" =

console.log(" , vm.toString(TNetwork.unwrap(_currentNetwork)));
console.log(" e vm.toString(TNetwork.unwrap (previetwork)));
switchBack(cur work, prevForkId);

_oldRoninBridgeManager = IRoninBridgeMar Bx5FA49E6CAS54a9daa8eCadFA03ADBDESee@75D84a) ;
_proposer 0802580a1fbdeF67ACe39D 5b2C741059;

B4e7fc3FaDB) ;

_prankChangeAdminMainchainBM();
_upgradeBridgeMainchain

Figure 1Run function screenshot
The run function serves as the entry point for the entire script and primarily handles the migration and
upgrade of the bridge manager on the Ronin mainnet. First, it loads the new bridge manager contract
instance on the Ronin mainnet. Then, it switches to the companion network (Ethereum mainnet) to
load the current main chain bridge manager instance. After performing checks and outputting
information, the function switches back to the Ronin network to set the addresses of the old and new
bridge managers. Next, it calls _prankChangeAdminMainchainBM() to impersonate an admin and
change the permissions of the main chain bridge manager. Finally, it invokes

_upgradeBridgeMainchain() to complete the logic upgrade of the main chain bridge manager.

Page 9 of 38

Ronin Bridge Security Audit

n _upgradeBridgeMainchain() al {
TNetwork prevNetwork, ui prevForkId) = switchTo(_companionNetwork);

wethUnwrapper = 8x8848b12511d9BE6ede@94089h12+54923CAE2F83;

mainchainGatewayV3Llogic = Bxfc274EC92bBb1A1472884558d1B5CaaC6F8220Ee;
ainchainGatewayV3Proxy = loadContract(Contract.MainchainGatewayV3.key());

ISharedArgument . SharedParameter memory param;
param.mainchainBridgeManager.callbackRegisters = ne
param.mainchainBridgeManager.callbackRegisters[®] = loadContract(Contract._MainchainGatewayV3.key());

expiredTime = 1723481999;

y mainchainTokens =
roninTokens =
TokenStandard[] memory standards
[1[4] memory thresholds;

ture(
abi .encodeCall(TMainchainGatewayV3 .mapTokensAndThresholds|, (mainchainTokens, roninTokens, standards, thresholds

targets[1] = mainchainGatewayV3Proxy;
calldatas[1 encodeWithSignature
", mainchainGatewayV3logic, abi.encodeWithSelector (MainchainGatewayV3.initializeVa.selector| wethUnwrapper,

targets[2] = mainchainGatewayV3Proxy;
calldatas[2] =
-encodewithsignature("fu ytes)", (abi.encodeWithsignature ss)'], 11, address(_newMainchainBridgeManager))));

mainchainGatewayV3Pr:
-encodeWithSignature) address (_newMainchainBridgeManager));
targets[4 d newMainchainBridgeManager
calldatas[4 odeMithSignature
"f 1(b ", (abi.encodelithSignature(" ", param.mainchainBridgeManager.callbackRegisters))

targets[5 newMainchainBr:
calldatas[5 encodeWithSignature s)" (_newlMainchainBridgeManager));

Figure 3 _upgradeBridgeMainchain function screenshot(2/2)
The _upgradeBridgeMainchain function primarily handles the upgrade of the main chain bridge
manager and creates a proposal containing several critical steps. Specifically, the function first
switches to the companion network and deploys the new contract logic. Next, it sets the mapping rules
for the WBTC token using mapTokensAndThresholds, upgrades and initializes the Mainchain Gateway
V3 logic contract using initializeV4, sets the new bridge manager address, and changes the admin
permissions. All these actions are bundled into a proposal, which includes steps such as
mapTokensAndThresholds and initializeV4, and is eventually executed by calling the relayProposal

function on the old bridge manager contract.

Page 10 of 38

; Ronin Bridge Security Audit

2.2 Check for uninitialized parameters on the chain

Based on the script(20240716-p3) code analysis, the migration script's execution logic can be
combined with the on-chain code to check whether, aside from the missing weight updates, there are

any other uninitialized parameters in the actual on-chain environment.

mapTukenaAndThPthnldJ
: _mainchainTokens,
_roninTokens,
_standards,

_thresholds
extern: 11 onlyProxyAdmin
if malnfhdlﬂTuPPHS length == 8) revert ErrEmptyArray
_mapTokens(_mainchainTokens, _roninTokens, _standards);
_setHighTierThresholds(_mainchainTokens, _thresholds[@]);
_setlockedThresholds(mainchainTokens, thresholds[1]);
_setUnlockFeePercentages(mainchainTokens, _thresholds[2]);
_setDailyWithdrawallimits| mainchainTokens, thresholds[3]);

.

|r| |r| |r| |

Figure 4 mapTokensAndThresholds function screenshot

initializeV4({address payable wethUnwrapper) external reinitializer(4) {
wethUnwrapper = WethUnwrapper(wethUnwrapper

Figure 5 initializeV4 function screenshot

The first call in the proposal is the mapTokensAndThresholds function, which initializes token
mappings and related threshold parameters. It takes the token addresses on the main chain and Ronin
network, token standards, and an array containing four types of thresholds. This function maps the
tokens to the Ronin network and sets the high-tier thresholds, locked thresholds, unlock fee
percentages, and daily withdrawal limits. The second call is the initializeV4 function, used to initialize

the WETH address. Apart from these initialization operations, the proposal does not involve updates to

other contract parameters.

Combining on-chain contract data and code analysis, it is confirmed that the contract currently lacks
updates for _operatorWeight and _totalOperatorWeight. Now there are two ways to solve this problem:
the first is to directly utilize the onBridgeOperatorsAdded function that already exists in the current

contract to update the operator's weights; the second is to upgrade the contract and implement the

initializeV5 function in the upgraded contract to update the weights.

Page 11 of 38

Ronin Bridge Security Audit

onBridgeOperatorsAdded|

length = operators.length;
length != addeds.length || length != weights.length) re ErrLengthMismatch(msg.sig
if (length == 8
n IBridgeManagerCallback.onBridgeOperatorsAdded. selector;

i ¢ length; ++1i
addeds[1

_totalOperatorWeight += weights[i];
_operatorkeight[operators[i]] = weights[i];

irn IBridgeManagerCallback.onBridgeOperatorsAdded.selector;

Figure 6 onBridgeOperatorsAdded function screenshot

2.3 20240807-ir-recover script code logic analysis

This section provides an analysis of the script logic used to fix the vulnerability, and based on this

analysis, confirms the feasibility of the fix.

] n run() public virtual onlyOn(DefaultNetwork.RoninMainnet._key
TNetwork currentNetwork = network();

, _companionNetwork) = currentNetwork.companionNetworkData();

Thetwork previNetwork, uin 6 prevForkId) = switchTo(_companionNetwork);

_preCheck Withdrawable();
_perform_PrankFix();
_perform_checkAfterPrankFix();

switchBack(prevNetwork, prevForkId);

_performCreateProposalOnRonin() ;

Figure 7 run function screenshot

The script logic is generally divided into four steps:

1. _preCheck_Withdrawable: Perform a preliminary check by simulating operations to cancel the pause
and ensure that funds can be withdrawn normally.

2. _perform_PrankFix: Execute the fix by creating a proposal and calling the onBridgeOperatorsAdded
function within the proposal to set the weights.

3. _perform_checkAfterPrankFix: Check after the fix to ensure that withdrawal operations can
proceed normally.

4. _performCreateProposalOnRonin: Initiate a proposal on the Ronin chain.

Page 12 of 38

Ronin Bridge Security Audit

2.4. Test the 20240807-ir-recover script

This section describes the execution of the fix script and assesses whether it effectively resolves the
vulnerability based on the test results.

Script execution test screenshot:

TOOt@DESKTOP-9QBIGDL : ~/bridge-contracts forge SCript script/20240807-ir-recover/20249807-1r-recover.s.sol ~VVvv —-sig "run(bytes,string)" Oxc6486226 "network.ronin-mainnet"
[] Compiling. .
No files changed, compilation skipped
Traces:
[16919246] Migration__20240807_IR_Recover@@x7FA9385bE102ac3EAC297483Dd6233D62b3e1496
el (€5)

false
("out/GeneralConfig.sol/GeneralConfig.json")
0x6080604052348015630000001 2576000807 d 55060408051 60208082018352600082528251808401909352600cB3526b6HGST06CEFTI6A656e74732F60a01b908301529080828160126300000056838263)

Screenshot of the run function call in the script:

0]
0x0d726f6e696e2d6d61696e626574000000000000000000008000000000000000
(0x0d726f6e696e2d6d61696e6e6574000000BOHOOHOBOOHOOBBOODOEEBOOOOEEED)
"ronin-mainnet

)]
0x0d726f6e696e2d6d61696e6e6574000000000000000000000000000000000000
(0x0d726f6e696e2d6d61696e6e657400000000DDOOOBOODOOBBOODOEEBOOOOEEEE)
0x08657468657265756000
(8x0B657468657265756d00000000000HOO0B00HAEEBOOHAEEEOOOOEEBOOOOEEEE)
NetworkData({ network: Bx08657468657265756d000000000000000000DOO0BO0NOOEEONOOEB0DDAABR0O, blockTime: 3, chainld: 1, chainAlias: “ethereum", explorer: "https://et

e}
0x0d726f6e696e2d6d61696e6e6574000000000000000000000000000000000000
(6x0d726f6696e2d6d61696e6e6574000000000OOOBDODOOEBOODOOEE0EDOOAED, ©)
]

¢}
0x0d726f6e696e2d6d61696e6e6574000000000000000000008000000000000000
(6x0B657468657265756d000000000000DOO000OHOO000AHOOEEODOEEB0EDOEAED, ©)

0

("ethereun")

"https://eth.lamarpc. con”
("https://eth.lamarpc. con")

1
("\u{1b}[9UmNetworkConfig: \uflb}[@methereum fork created with forkI

Successful withdrawals were made using fake credentials, confirming that the vulnerability persisted

after the suspension was lifted.

(0xe514d9IDEB7966c8BEOCa922deBad6U264eA6bcdd)

t emit Unpaused(:

("Stop pranking Pause Enforcer

(<pk>)
recipient-mainchain: [0x4D6c16AEFa26FcTD666F337594a6CTF3CFE3FaBC
(recipient-mainchain: [0x4D6c16AEFa26FcTD666F337594a6CTF3CFE3FaBC], "recipient-mainchain®)

(<pk>)
recipient-ronin: [0xaB59aaFF9BCdbcUF5DF6799D8CUABABGeBaT38UF
(recipient-ronin: [0xaB59aaFF9BCdbcdF5DF6799D8cUABAB6eBa7384F], “recipient-ronin®)

(true, false, false, false, ©x64192819Ac13Ef72bF6bSAE239AC672B43a9AF68)

|- emit withareuc kind: 1, mainchain: TokenOwner({ a
ddr: OXUDGCL6AEFa26FCTD666F33759Ha6CTFICFESFABC, tokenAddr: BxCO2aaA39b223FEBDOAORSCHF27eADIBB3CTS6CC2, chaind: 1 }), ronin: TokenOwner({ addr: @xaBS9aaFF9BCAbcHFSDF6799DBCHABABGRBAT3BAF,
tokenAddr: Bxc99a6A9B5eD2Caclefi1640596C5ASFOFUELOEFS, chainld: 2020 }), info: TokenInfo({ erc: ©, id: O, quantity: 3996093750860000000008 N1
[100595] (Receipt({ id: 133713371337 kind: 1, mainchain: TokenOwner({ addr: Ox4D6C16AEFa26FC7D666337594a
6CT#3CFE3FaBC, tokenAddr: 0xCO22aA39b223FEBDOAORSCUF27eADIOBCT56CC2, chainId: 1 }), ronin: TokenOwner({ addr: OxaB59aaFFOBCbcHFSDFG799DBCHABABGBAT3BHF, tokenAddr: xc99a6A9B5eD2Caclefdl
6U4B596C5ASFOFUELIEFS, chainId: 2020 }), info: TokenInfo({ erc: 0, id: 6, quantity: 3996893750000008000600 1) 1), [Signature({ v: 28, r: Bxb377fd3c624426b0eF33F1100FCOU24e6HHFID
00e8d4a859cd9102e598345U4, s: Ox2eTF1F124b131944db29B2CTOF5FFCHOSU326FacbbcadSFI6LF3FO42b5BF52¢8 1)])
| | [97710] (Receipt({ id: 133713371337 kind: 1, mainchain: TokenOwner({ addr: Ox4D6C16AEFa26FC7DE66F3375
94a6CTFICFE3FaBC, tokenAddr: OxC62aaA39b223FEBDOAGRSCHF27eADIBB3CTS6CC2, chainld: 1 }), ronin: TokenOwner({ addr: 8xaB59aaFF9BCAbciFSDF6799D8CHABABGeBAT3BUF, tokenAddr: Oxc99aGA98SeD2Cacle
1640596C5A5FOFUELOESS, chainld: 2020 }), info: TokenInfo({ erc: 0, id: ©, quantity: 3996093750000000000000 1) 1), [Signature({ v: 28, r: Oxb377fd3c624426b0ef33F110dFcoU24e6HHY
£9000e8dUaB59cd9102e5983U5U, s axzevflf1zub1319uudbzgszc704544cuasuzzsfacbbcags;1s143¢au2h5845248 nh
| | [3000] (0xd54a9d19b45eba99d99+d58571d7HeedFe14d0a292570552b832737F92036F7e, 28, 8117600246688448963099593578995915804758505035754430316272551470647
8172423492, 21@3@995@593791’7’73135753"6”6959”86“9255H35591S?ﬂ2152'738’4538’48’43779997837110Sﬂ)
0x00PPE000000PE000B0000011219eT7Tcb5dfle33e602985830d9ef07F51302
[?1 55 {value: 3996093750000000000000} ()

emit Withdrew(1, mainchain: TokenO
OxUD6C16AEFa26FCTDE66F337504a6CTF3CFE3FABC, tokenAddr: ©xC2aaA39b223FEBDOABeSCUF27eADIOB3CT56CC2, chainld: 1 }), ronin: TokenOwner({ addr: axasssaarrﬁBtdncuanrsveaoacuAaAase
Ba7384F, tokenAddr: Oxc99a6A985eD2Caclefdl6HB5I6CSASFOFUEIOEFS, chainld: 2020 }), info: TokenInfo(f erc: 0, id: O, quantity: 3996893750800000000008 D)

The onBridgeOperatorsAdded function was successfully called through the proposal, and the weights

were successfully updated.

b000000EE0000EAAREOOAEEAEEE000EEAREOAEEAEE000]1000ABB00EEEEEE000EEARBA00EEAEEE000EAAREE00EEAERE000AEAREE0000AA100000EAREB00000A0BO00AEAEREO000AEREO00EEEEEE0000EEARO00EARE0010000000000000
b000000EEE000EEAREDEAEAAREE00OEEAREDOAAAAEEE00OAAA100B0EEAEEE000REARBBE0EEAEAB00AAARABE0EEAERBO0OAAARABE00EAAAR0E1AAAAREE00EAAARBDOAEAAREE00OEEARBDEAEEARAB00OAAARBBE0EEAEREB00OAA1ABBE0EEAE

b000000600000000E0000000E0000000BBAO00EEEEEA0000AEEEO00E0010000000080000000000000000000000000000000000E0000000000000000E0010000000000000000000000800160
b00000080000000ERP0AE0EEEE0000EEEDA00EEREEA000EEEBE00EEEEE001000080000000E00000000E0000000E00000000EE000000ERP000EEEEEE000001000000E0E0000000000000E0EE00000000B0A00E0EEE0000008B0000000

[539620] ([6xc23F2907Bc11848B5d5cEdBBB35e915D7b760d99, OxUb3844A29CFA5B24F53e2137Edb6dc2b5U501BeA, BxUal217
117512027D853785824eFU8522c512A3Fe, 0x32cB6da260726BB2192cH085BESTaFDIUSA215Ch, BxAI1DA5bTCER68UFUIEBFeOC25BICUBb1TUTA2a0F, Bxe38aFbETT38b6ECH280A6bCal176C1CIAO28A19C, OXETISFLBF2FSDF5a666

b:772112C7e5dDHed663e844eTOTTC1569a2E88ce, OXECSCOBUOLFOSFECHOb1E]33EUFOIDBED21d96aY, Bx332253265036689D9B30ESTL12CD1aaDBLATT3F9, 0x236aF2FFdb611B14e3042A982d13EdA1627dIC96, OXSHCBCHFOT
b()7D43C 3649bEF 6F10eA6B6ETdU3eF, OxX66225AcCTBBeT89C57al1C0a18FO51CTT9d678B5, OXS6UDCBESSED360826F27D1ELOCSTcbbe6CT6F50F], [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 1
b0, 100, 100, 100, 100, 100, 100, 100, 100], [true, truel)

0x8£851d8200
0x8851d8200
o, gasUsed", 550687)

0x2C3CFb17774Ce0CFa3ubB3£3761904e7Fc3FaDB. o

After verifying the updated weights, another attempt to withdraw token failed, proving the vulnerability
had been fixed.

Page 13 of 38

Ronin Bridge Security Audit

[30861] (Receipt({ id: 133713371337 ind: 1, mainchain: TokenOwner({ addr: @x4D6c16AEFa26Fc7D666F337594a6
CT7£3CFE3faBC, tokenAddr BxCG2aaA39b22:FE8DGAGeSCUF27eAD9983C756Cc2, chainId: 1 }), ronin: TokenOwner({ addr: axaa59aaFF9BcdhcquDF579908cuA8Asaeaa7334F ‘tokenAddr: 0xc99a6A985eD2Cacleflls
48596C5ASFOFUELOERS, chaind: 2020 }), info: TokenInfo({ erc: ©, id: 0, quantity: 399689375000000000000 1 1), [Signature({ v: 28, r: Oxb377fd3c62426b0ef33F110dFCoH2Ue6HHFI00
0e8da859cd9162e59834544, s: Bxle7fl$12uh1319Hudb2982(7ﬂ#ﬁffcuﬂ&u}ls#a(hh(agsf16163$ﬂu2h50452fﬁ HH

| | | [2796e]). [0x9B137463d4ET9I86DTF535F9B79e28b4EF1938E9b] : : (Receipt({ id: 133713371337 kind: 1, mainchain: TokenOwner
(4 addr: OxHD6CI6AEFa26FCTD666F337594a6CTFICFESFABC, tokenAddr: OxC2aaA39b223FEBDBARRSCUF27eADIOBICTS6CC2, chaind: 1 }), ronin: TokenOwner({ addr: OxaB59aaFF9BCdbCHFSDF6799DBCHABABGEBATS
8UF, tokenAddr: ©xc99a6A985eD2Caclefdl640596C5A5FOFUELIEFS, chainId: 2020 }), info: TokenInfo({ erc: 0, id: @, quantity: 3996093750000000000000 1 1), [signature({ v: 28, r: Oxb
377Fd3c62uu26b0eF33F110dfc9u2ue5uuuF9aooeeduaSSchalazesgeausuu S: Ox2e7F1F124b131944db2982CTOF5FFCUO5U326FacbbcadSFLE1F3FOU2b5BF52F8 1)])
| | | | [3000] (0xd54a9d19bU5ebag9d99d585T1d7Heeorel4d0a292570552b832737F92036F e, 28, 8117600246688448963099593578995915804758505035754438316272551470647
8172423492, 21030995959379177818675B4sus95gusau925543589189@21527334538uau377999783711u80)
| ‘ L_ ©x000000000000000000B0B00O11219e77cb5dFle33e6e2985830d9eFOTF513F02
ErrInvalidSigner(0x11219E77CB5dF1E33e6e2985830d9EFOT513F02, 0, Signature({ v: 28, r: 0xb377fd3c62u4426b0ef33f110dFcIU24e64ULFIO00LBAYaB59CdI102e5983U5u4, s: ©
X2eTF112Ub1 3194Kdb29B2CTBF5FFCHBSUI26Facbbead5 161 3F0U205BF52F8 120
[E~~Inva11d51gner(ex11219577chdF1E33e6e2955530d9Efe7f513f02 0, Signature({ v: 0xb377d3c624426b0ef33F110dFcIU2Ue6UULFIBBBRBAYaB5ICAI102e5983U5Ul, ox2e7
flf12ubl31suudbz982c7a#5ffcuusu325facbbcassflslfzfauzbsafszfe)
| Err expected error: 0x4e97700700000000000000000000000011219e77ch5df1e33e622985830d9eF07513F02000
Bmaaaann0eaaaaeoammaaasn0eaaaa0005maasanoeaaaaaoemmaasannealcbz77Fd3:52uu25haefz3(11ad#c9uzue5uuu(9Base5duas59chlB295953usuu2evfl(174b1319uudb2982:7a#544cu95432afa:bbca95F15153f042b58452€
8 1= Ox9eBf5F
cted error: 9x4e97700700000000000000000000000011219e77chb5df1e33e6e2985830d9e£07F513£02000000000000000000000A0BO00OOA00000AAAABEE00OAARO00OREARAE000OOARB0OOEED
BaaaaaauBBBee9000aaaaeauBBBee9000aaaaaauUBBseeﬁeeaaaaaalcszVFdzcézuuzahuefzzFl1edFceu2ueeuuurgﬂeeesduassacugleze5983u5uu2e7r1Fl24b1319uudh2962c706565c495u326Facbbcaasflalrsfeuzbssfszfs
0x9eBF5F63

Page 14 of 38

; Ronin Bridge Security Audit

3 Contract Audit

2.1Proposal Security

[Ronin-01] Propose Function

Lines

Description

RoninBridgeManager.sol#L.35-57

The _proposeProposalStruct function allows a governor to create a
corresponding callback proposal. The proposal includes information such as the
target contract to be called, callback data, and expiration time. Subsequent
voting can be done using functions like castProposalBySignatures. The
propose function can only be called by the Governor, and the expiration of the

old proposal will be checked when creating a proposal. When the old proposal
expires, the current proposal will replace the round of the old proposal, thus
ensuring the safety of the round. Creating a proposal requires classifying the
proposal's chainid, which affects whether the subsequent voting type is a
signed vote or an unsigned vote.
_proposeProposalStruct(.ProposalDetail

proposal, address creator) returns (uint256 round_) {

uint256 chainId = proposal.chainId;

if (chainId == @) revert ErrInvalidChainId(.sig, o,

.chainid);

proposal.validate(_proposalExpiryDuration);

bytes32 proposalHash = proposal.hash();

round_ = _createVotingRound(chainId);

saveVotingRound(vote[chainId][round], proposalHash,
proposal.expiryTimestamp);

if (round_ != proposal.nonce) revert
ErrInvalidProposalNonce(.sig);

emit ProposalCreated(chainId, round_, proposalHash, proposal,

creator);

}

Page 15 of 38

; Ronin Bridge Security Audit

[Ronin-02] CastVote Function

Lines

Description

RoninBridgeManager.sol#L67-73

The _castVote function allows voting on the proposal for the current round, but
the voting process is divided into two types: signed voting and unsigned voting.
Signed voting is typically used for cross-chain proposals, where the chainid is
not 2020. In this type of voting, a signature is recorded during the voting
process. Once the signature weight of the entire proposal accumulates
sufficiently, the governor will handle the signature list on the corresponding
chain of the proposal in the form of a RelayPropose. Unsigned voting is
generally used for proposals on the current chain. When the weight
accumulates sufficiently, the current chain's calldata will be invoked. After each
governor votes, the contract records the signature hash for the corresponding
proposal to prevent the reuse of signatures for the same proposal, ensuring the

security of the signatures.
_castVote(
.ProposalDetail proposal,
.VoteType support,

uint256 minimumForVoteWeight,

uint256 minimumAgainstVoteWeight,

address voter,

signature,
uint256 voterWeight
returns (bool done) {

uint256 chainld = proposal.chainld;

uint256 round_ = proposal.nonce;

ProposalVote _vote = vote[chainId][round_];

if (_tryDeleteExpiredVotingRound(_vote)) {

return R

}

if (round[proposal.chainId] != round_) revert
ErrInvalidProposalNonce(.sig);

if (_vote.status != VoteStatus.Pending) revert
ErrVoteIsFinalized();

if (_voted(vote, voter)) revert ErrAlreadyVoted(voter);

_vote.voted[voter] = 5

if (signature.r > @ || signature.s > @ || signature.v > 0) {

Page 16 of 38

Ronin Bridge Security Audit

_vote.sig[voter] = signature;
}
emit ProposalVoted(_vote.hash, voter, support, voterWeight);
uint256 _forVoteWeight;
uint256 _againstVoteWeight;
if (support == Ballot.VoteType.For) {
_vote.forVoteds.push(voter);
_forVoteWeight = _vote.forVoteWeight += voterWeight;
} else if (support == Ballot.VoteType.Against) {
_vote.againstVoteds.push(voter);
_againstVotelWeight = _vote.againstVoteWeight += voterWeight;
} else {
revert ErrUnsupportedVoteType(.sig);
}
if (_forVoteWeight >= minimumForVoteWeight) {
done = 5
_vote.status = VoteStatus.Approved;
emit ProposalApproved(_vote.hash);
if (proposal.isAutoExecute()) {
_tryExecute(_vote, proposal);
}
else if (_againstVoteWeight >= minimumAgainstVoteWeight) {
done = ;
_vote.status = VoteStatus.Rejected;

emit ProposalRejected(_vote.hash);

Page 17 of 38

; Ronin Bridge Security Audit

[Ronin-03] Execute Function

Lines RoninBridgeManager.sol#.187-189
Description The execute function is called by the proposal’s executor to attempt to execute

the proposal, invoking the calldata on the target contract with the contract's
authority. When executing a proposal call, the contract checks whether the
hash of the currently passed proposal is consistent with the hash of the ledger
vote, and checks the voting status and whether the caller is the executor of the

proposal. These checks ensure the completeness of the proposal execution.
_executeWithCaller(.ProposalDetail proposal,
address caller) {
bytes32 proposalHash = proposal.hash();
ProposalVote _vote =
vote[proposal.chainId][proposal.nonce];
if (_vote.hash != proposalHash) {

revert ErrInvalidProposal(proposalHash, _vote.hash);

}

if (_vote.status != VoteStatus.Approved) revert

ErrProposalNotApproved();
if (caller !'= proposal.executor) revert ErrInvalidExecutor();

_tryExecute(_vote, proposal);

Page 18 of 38

; Ronin Bridge Security Audit

[Ronin-04] DeleteExpired Function

Lines RoninBridgeManager.sol#1.208-213

Description The deleteExpired function allows for manually deleting expired proposals. It is
important to note that even if deleteExpired is not called, expired proposals can
still be automatically deleted when creating new proposals. When creating a
proposal, the contract will call the _tryDeleteExpiredVotingRound function to

delete the expired proposal according to the current proposal status. This

ensures the security of the contract round.
_tryDeleteExpiredVotingRound(
proposalVote) returns (bool isExpired) {
isExpired = _getChainType() == ChainType.RoninChain &&
proposalVote.status == VoteStatus.Pending &&
proposalVote.expiryTimestamp <= .timestamp;
if (isExpired) {
emit ProposalExpired(proposalVote.hash);
for (uint256 _i; _i < proposalVote.forVoteds.length;) {
delete proposalVote.voted[proposalVote.forVoteds[_i]];
delete proposalVote.sig[proposalVote.forVoteds[_i]];
unchecked {
++_1;
}}
for (uint256 _i; _i < proposalVote.againstVoteds.length;) {
delete proposalVote.voted[proposalVote.againstVoteds[_i]];

delete proposalVote.sig[proposalVote.againstVoteds[_i]];

unchecked {

++ 1;

}

delete proposalVote.status;

delete proposalVote.hash;

delete proposalVote.againstVoteWeight;
delete proposalVote.forVoteWeight;
delete proposalVote.forVoteds;

delete proposalVote.againstVoteds;

delete proposalVote.expiryTimestamp;

Page 19 of 38

; Ronin Bridge Security Audit

[Ronin-05] RelayProposal Function

Lines

Description

MainchainBridgeManager.sol#L.39-46
The relayProposal function can relay proposals that have already been passed
on the Ronin chain. When the Ethereum-type proposal on the Ronin chain has
sufficient weight to pass, the governor can collect the corresponding
signatures in the proposal and use the relayProposal function to create and
execute the corresponding proposal. relayProposal will only be executed when
the proposal of the ronin chain is passed, and cannot be executed by voting
alone in Ethereum, this design pattern ensures that voting on proposals is
conducted on the ronin chain, making it easier to carry out and manage
proposals.

_relayVotesBySignatures(

.ProposalDetail _proposal,
.VoteType[] _supports,

[1] _signatures,
bytes32 proposalHash
{
if (!(_supports.length > @ & & _supports.length ==
| signatures.length)) revert ErrLengthMismatch(.sig);
bytes32 _forDigest =
ECDSA.toTypedDataHash(_proposalDomainSeparator(),
Ballot.hash(proposalHash, Ballot.VoteType.For));
bytes32 _againstDigest =
ECDSA.toTypedDataHash(_proposalDomainSeparator(),

Ballot.hash(proposalHash, Ballot.VoteType.Against));

address|[] _forVoteSigners = new
address[](_signatures.length);
address[] _againstVoteSigners = new
address[](_signatures.length);
{
uint256 _forVoteCount;
uint256 _againstVoteCount;
{
address _signer;
address _lastSigner;

Ballot.VoteType _support;

Signature _sig;

Page 20 of 38

Ronin Bridge Security Audit

for (uint256 _i; _i < _signatures.length;) {
_sig = _signatures[_i];
_support = _supports[_i];
if (_support == Ballot.VoteType.For) {
_signer = ECDSA.recover(_forDigest, sig.v, _sig.r, sig.s);
_forVoteSigners[_forVoteCount++] = _signer;
} else if (_support == Ballot.VoteType.Against) {

_signer = ECDSA.recover(_againstDigest, _sig.v, _sig.r,

_againstVoteSigners[_againstVoteCount++] = _signer;
} else {

revert ErrUnsupportedVoteType(.sig);
}
if (_lastSigner >= _signer) revert ErrInvalidOrder(
_lastSigner = _signer;
unchecked {

++ 1;

assembly {
mstore(_forVoteSigners, _forVoteCount)

mstore(_againstVoteSigners, _againstVoteCount)

}

ProposalVote _vote =
vote[proposal.chainId][_proposal.nonce];
uint256 _minimumForVoteWeight = _getMinimumVoteWeight();
uint256 _totalForVoteWeight = _sumWeight(_forVoteSigners);
if (_totalForVoteWeight >= _minimumForVoteWeight) {
if (_totalForVoteWeight == @) revert
ErrInvalidVoteWeight(.sig);
_vote.status = VoteStatus.Approved;
emit ProposalApproved(_vote.hash);
_tryExecute(_vote, _proposal);
return;
}
uint256 _minimumAgainstVoteWeight = getTotalWeight() -

| minimumForVoteWeight + 1;

Page 21 of 38

Ronin Bridge Security Audit

uint256 _totalAgainstVoteWeight = sumWeight(_againstVoteSigners);
if (_totalAgainstVoteWeight >= _minimumAgainstVoteWeight) {
if (_totalAgainstVoteWeight == @) revert
ErrInvalidVoteWeight(.sig);
_vote.status = VoteStatus.Rejected;
emit ProposalRejected(_vote.hash);
return;

}

revert ErrRelayFailed(.sig);

Page 22 of 38

; Ronin Bridge Security Audit

2.2 Cross-chain Bridge Security

[Ronin-06] RequestWithdrawal Function

Lines RoninGatewayV3.sol#1.208-210

Description The requestWithdrawalFor function can generate a cross-chain Receipt on the
Ronin chain. If the user later obtains enough weighted signatures, they can use
the corresponding cross-chain Receipt and signatures on Ethereum to
withdraw funds. It is important to note that when withdrawing corresponding
cross-chain funds from Ethereum, there is a fund threshold. If the withdrawal
amount exceeds this threshold, a specific unlock account will need to call the
unlockWithdrawal function to unlock the corresponding Receipt for
withdrawal.The generation of the receipt includes the kind of Withdrawal type.
This type of receipt can only be redeemed on Ethereum, which ensures the

legitimacy of the receipt.
_requestWithdrawalFor(.Request _request,

address _requester, uint256 _chainId) {

_request.info.validate();

_checkWithdrawal(_request);

MappedToken _token = getMainchainToken(_request.tokenAddr,
| chainlId);

if (_request.info.erc != _token.erc) revert

ErrInvalidTokenStandard();

_request.info.handleAssetIn(_requester, _request.tokenAddr);

_storeAsReceipt(_request, chainId, requester, token.tokenAddr);

Page 23 of 38

Ronin Bridge Security Audit

[Ronin-07] DepositFor Function

Lines RoninGatewayV3.sol#.146-148

Description The depositFor function allows the Operator to vote on the generated Receipt
on Ethereum. Once the Receipt accumulates sufficient weight, the contract will
send the corresponding cross-chain funds to the user recorded in the Receipt.
When withdrawing funds, the chainid and kind types are checked to avoid
multiple chains being reused. This cross-chain withdrawal requires enough

operators to call and vote, which ensures the overall security of the receipt.
_depositFor(.Receipt receipt, address
operator, uint256 minVoteWeight)
uint256 id = receipt.id;
receipt.info.validate();
if (receipt.kind != Transfer.Kind.Deposit) revert
ErrInvalidReceiptKind();
if (receipt.ronin.chainId != .chainid) revert
ErrInvalidChainId(.sig, receipt.ronin.chainld, .chainid);
MappedToken token =
getMainchainToken(receipt.ronin.tokenAddr,
receipt.mainchain.chainld);
if (!(token.erc == receipt.info.erc && token.tokenAddr ==
receipt.mainchain.tokenAddr)) {
revert ErrInvalidReceipt();
}
IsolatedGovernance.Vote _proposal =
depositVote[receipt.mainchain.chainId][id];
bytes32 receiptHash = receipt.hash();
VoteStatus status = _castIsolatedVote(_proposal, operator,
minVoteWeight, receiptHash);
emit DepositVoted(operator, id, receipt.mainchain.chainld,
| receiptHash);
IBridgeTracking bridgeTrackingContract =
IBridgeTracking(getContract(ContractType.BRIDGE_TRACKING));
if (status == VoteStatus.Approved) {
_proposal.status = VoteStatus.Executed;
receipt.info.handleAssetOut((receipt.ronin.addr),

receipt.ronin.tokenAddr, IWETH(address(@)));

bridgeTrackingContract.handleVoteApproved(IBridgeTracking.VoteK

Page 24 of 38

Ronin Bridge Security Audit

.Deposit, receipt.id);

emit Deposited(_receiptHash, receipt);

}
bridgeTrackingContract.recordVote(IBridgeTracking.VoteKind.Depos

receipt.id, operator);

Page 25 of 38

; Ronin Bridge Security Audit

[Ronin-08] SubmitWithdrawal Function

Lines MainchainGatewayV3.sol#L173-175

Description If a user has obtained enough weighted signatures, they can call the

submitWithdrawal function and pass in the signature list to use the operator's
signatures to verify the weight of the Receipt, thereby claiming the cross-chain
funds. It is important to note that when withdrawing corresponding cross-chain
funds from Ethereum, there is a fund threshold. If the withdrawal amount
exceeds this threshold, a specific unlock account will need to call the
unlockWithdrawal function to unlock the corresponding Receipt for withdrawal.

_submitWithdrawal(.Receipt receipt,

[1] signatures) returns (bool locked)

uint256 id = receipt.id;
uint256 quantity = receipt.info.quantity;
address tokenAddr = receipt.mainchain.tokenAddr;
receipt.info.validate();
if (receipt.kind != Transfer.Kind.Withdrawal) revert
ErrInvalidReceiptKind();
if (receipt.mainchain.chainld != .chainid) {
revert ErrInvalidChainId(.sig, receipt.mainchain.chainId,
.chainid);
}
MappedToken token =
getRoninToken(receipt.mainchain.tokenAddr);
if (!(token.erc == receipt.info.erc && token.tokenAddr ==
receipt.ronin.tokenAddr && receipt.ronin.chainId == roninChainId)) {
revert ErrInvalidReceipt();
}
if (withdrawalHash[id] != @) revert
ErrQueryForProcessedWithdrawal();

if (!(receipt.info.erc == TokenStandard.ERC721

|| ! reachedWithdrawallimit(tokenAddr, quantity))) {

revert ErrReachedDailyWithdrawallLimit();

}
bytes32 receiptHash = receipt.hash();

bytes32 receiptDigest = Transfer.receiptDigest(_domainSeparator,

receiptHash);

Page 26 of 38

Ronin Bridge Security Audit

uint256 minimumWeight;
(minimumWeight, locked) = _computeMinVoteWeight(receipt.info.erc,
tokenAddr, quantity);
{
bool passed;
address signer;
address lastSigner;
Signature sig;
uint256 accumWeight;
for (uint256 i; i < signatures.length; i++) {
sig = signatures[i];
signer = ECDSA.recover({ hash: receiptDigest, v: sig.v, r: sig.r,
s: sig.s });
if (lastSigner >= signer) revert ErrInvalidOrder(.sig);
lastSigner = signer;
uint256 w = _getWeight(signer);
if (w == @) revert ErrInvalidSigner(signer, w, sig);
accumiWeight += w;
if (accumWeight >= minimumWeight) {
passed = 5

break;

}
if (!passed) revert ErrQueryForInsufficientVoteWeight();

withdrawalHash[id] = receiptHash;
}
if (locked) {
withdrawallocked[id] = ;
emit WithdrawallLocked(receiptHash, receipt);
return locked;
}
_recordWithdrawal (tokenAddr, quantity);
receipt.info.handleAssetOut((receipt.mainchain.addr),
tokenAddr, wrappedNativeToken);

emit Withdrew(receiptHash, receipt);

Page 27 of 38

; Ronin Bridge Security Audit

[Ronin-09] UnlockWithdrawal Function

Lines MainchainGatewayV3.sol#L180-205

Description If the amount of cross-chain funds to be claimed by the user is large enough,

the Receipt will be locked. At this time, the unlock account will need to call the
unlockWithdrawal function to unlock the Receipt so that the user can claim the

corresponding cross-chain funds. When performing the unlocking operation, a
portion of the funds will be used as commission for the unlock account, which

ensures the enthusiasm for the unlock account.
unlockWithdrawal(.Receipt receipt)
onlyRole(WITHDRAWAL UNLOCKER ROLE) {
bytes32 receiptHash = receipt.hash();
if (withdrawalHash[receipt.id] != receipt.hash()) {
revert ErrInvalidReceipt();
}
if (!withdrawallocked[receipt.id]) {
revert ErrQueryForApprovedWithdrawal();
}
delete withdrawallocked[receipt.id];
emit WithdrawalUnlocked(_receiptHash, receipt);
address token = receipt.mainchain.tokenAddr;
if (receipt.info.erc == TokenStandard.ERC20) {

TokenInfo feeInfo = receipt.info;

feeInfo.quantity = _computeFeePercentage(receipt.info.quantity,

unlockFeePercentages[token]);
TokenInfo withdrawInfo = receipt.info;
withdrawInfo.quantity = receipt.info.quantity - feelnfo.quantity;
feeInfo.handleAssetOut((), token,
wrappedNativeToken);
withdrawInfo.handleAssetOut((receipt.mainchain
token, wrappedNativeToken);
} else {
receipt.info.handleAssetOut((receipt.mainchain
token, wrappedNativeToken);

}

emit Withdrew(_receiptHash, receipt);

Page 28 of 38

; Ronin Bridge Security Audit

[Ronin-10] RequestDepositFor Function

Lines MainchainGatewayV3.sol#L156-158
Description The requestDepositFor function can generate a cross-chain Receipt on

Ethereum. Subsequently, the operator on the Ronin chain can vote on the
Receipt. Once the accumulated weight of the votes is sufficient, the contract
will send the corresponding cross-chain funds to the user recorded in the
Receipt. This withdrawal method is convenient for users to make manual
proposals, but it requires sufficient security protection for the operator's

signature.
_requestDepositFor(_request, address
| requester) {
MappedToken _token;
address _roninWeth = address(wrappedNativeToken);
_request.info.validate();
if (_request.tokenAddr == address(9)) {
if (_request.info.quantity != .value) revert
ErrInvalidRequest();
_token = getRoninToken(_roninWeth);
if (_token.erc != request.info.erc) revert
ErrInvalidTokenStandard();
_request.tokenAddr = _roninWeth;
} else {
if (.value != @) revert ErrInvalidRequest();
_token = getRoninToken(_request.tokenAddr);
if (_token.erc != _request.info.erc) revert
ErrInvalidTokenStandard();
_request.info.handleAssetIn(_requester, _request.tokenAddr);
if (_roninWeth == _request.tokenAddr) {
wrappedNativeToken.approve(address(wethUnwrapper),
| request.info.quantity);

wethUnwrapper.unwrap(_request.info.quantity);

}
uint256 _depositId = depositCount++;

Transfer.Receipt _receipt =

| request.into_deposit _receipt(_requester, _depositld,

| token.tokenAddr, roninChainId);

Page 29 of 38

Ronin Bridge Security Audit

emit DepositRequested(_receipt.hash(), _receipt);

Page 30 of 38

Ronin Bridge Security Audit

4 Appendix

4.1Vulnerability Assessment Metrics and Status in Smart Contracts

4.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report
provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1(Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:
“critical”, "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of
exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Likelihood mpact Severe High Medium Low
Probable Critical High
Possible High
Unlikely
Rare

Page 310f 38

Ronin Bridge Security Audit

4.1.2 Degree of impact

® Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,
integrity, availability of smart contracts or their economic model, which can cause substantial
economic losses to the contract business system, large-scale data disruption, loss of authority
management, failure of key functions, loss of credibility, or indirectly affect the operation of other
smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.
® High

High impact generally refers to the vulnerability can have a relatively serious impact on the
confidentiality, integrity, availability of the smart contract or its economic model, which can cause a
greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.
® Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the
confidentiality, integrity, availability of the smart contract or its economic model, which can cause a
small amount of economic loss to the contract business system, individual business unavailability and

other impact.
® Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.
4.1.3 Likelihood of Exploitation
® Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.
® Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.

Page 32 of 38

Ronin Bridge Security Audit

® Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.
® Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

4.1.4 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

The project party did not fully fix the issue, but only mitigated the

Partially Fixed .
issue.

Acknowledged The project party confirms and chooses to ignore the issue.

Page 33 of 38

Ronin Bridge Security Audit

4.2 Audit Categories

No. Categories Subitems

SPL Token Standards

Visibility Specifiers

Lamport Check

Account Check

1 Coding Conventions
Signer Check

Program Id Check

Deprecated Items

Redundant Code

Integer Overflow/Underflow

Reentrancy

Pseudo-random Number Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

2 General Vulnerability
Function Call Permissions

Returned Value Security

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

Business Logics

Business Implementations

Manipulable Token Price

3 Business Security
Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

® Coding Conventions

Page 34 of 38

Ronin Bridge Security Audit

Audit whether smart contracts follow recommended language security coding practices. For example,
smart contracts developed in Solidity language should fix the compiler version and do not use
deprecated keywords.

® General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.
These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as
integer overflow/underflow and denial of service attacks.

® Business Security

Business security is mainly related to some issues related to the business realized by each project, and
has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.

Page 35 of 38

Ronin Bridge Security Audit

4.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.
The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used
within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or
wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor
shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the
technology currently available to Beosin. However, due to the technical limitations of any organization,
and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be
utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.

Page 36 of 38

Ronin Bridge Security Audit

4.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain
security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet
elites from world-renowned academic institutions. Beosin has more than 20 years of research
in formal verification technology, trusted computing, mobile security and kernel security, with
overseas experience in studying and collaborating in project research at well-known
universities. Through the security audit and defense deployment of more than 2,000 smart
contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,
Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.

Page 37 of 38

Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Script Audit
	2.1 20240716-p3 script code logic analysis
	2.2 Check for uninitialized parameters on the chai
	2.3 20240807-ir-recover script code logic analysis
	2.4. Test the 20240807-ir-recover script

	3 Contract Audit
	2.1 Proposal Security
	[Ronin-01] Propose Function
	[Ronin-02] CastVote Function
	[Ronin-03] Execute Function
	[Ronin-04] DeleteExpired Function
	[Ronin-05] RelayProposal Function

	2.2 Cross-chain Bridge Security
	[Ronin-06] RequestWithdrawal Function
	[Ronin-07] DepositFor Function
	[Ronin-08] SubmitWithdrawal Function
	[Ronin-09] UnlockWithdrawal Function
	[Ronin-10] RequestDepositFor Function

	4 Appendix
	4.1 Vulnerability Assessment Metrics and Status in
	4.2 Audit Categories
	4.3 Disclaimer
	4.4 About Beosin

